Ship route optimization considering on-time arrival probability under environmental uncertainty

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 149
  • Download : 0
As international regulations for commercial ships regarding environmental pollution and global warming are being reinforced, worldwide efforts are growing to reduce the fuel consumption of ships; this is directly related to the emissions of environmental pollutants and greenhouse gases. A common method to reduce the fuel consumption of ships is to find a ship route that consumes less fuel. In many existing ship route optimization studies, the desired ship routes are calculated using a single objective optimization algorithm such as A * to minimize the path length, travel time, or fuel consumption. However, it is practically more important to reach the destination no later than the alloted time slot at a port even under weather uncertainties. In this study, a multi-objective optimization algorithm is employed to calculate the Pareto set with two objective functions: the fuel consumption and the expected time of arrival. Subsequently, using the Pareto set, the uncertainty of the arrival time and the probability that the ship will arrive within the specified time are estimated. Finally, the route to reach the port on time is determined with more certainty while minimizing fuel consumption. In order to verify the validity of the proposed method, a set of simulations were performed, and their results are discussed.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2018-05-30
Language
English
Citation

OCEANS - MTS/IEEE Kobe Techno-Oceans Conference (OTO)

DOI
10.1109/OCEANSKOBE.2018.8559308
URI
http://hdl.handle.net/10203/248556
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0