Characterization of cellular elastic modulus using structure based double layer model

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 418
  • Download : 0
The mechanical characterization of cells is important for understanding cellular behavior and physiological functions. We used atomic force microscopy (AFM) to obtain a force-displacement curve and estimate the elastic modulus of hepatocellular carcinoma cells (HEP-G2) utilizing both linear Hertz-Sneddon (HS) and non-linear elastic models. In order to overcome the limitations of HS model, which assumes a linear homogeneous cell body, a cell is modeled as a double-layered body with an outer cytoplasmic layer made mostly of interconnected fibers of cytoskeleton proteins and a nucleus. By disrupting all cytoskeletal protein networks, we estimate the elastic modulus of the core nucleus using FEM for a single ellipsoid. Based on the nucleic modulus and cellular dimensions found by 3D confocal imaging, we develop a novel double-layered cellular (DLC) finite element model. The DLC model provides a more reliable estimate of the elastic modulus of the cell than conventionally used HS model and correlates closely with experimental results.
Publisher
SPRINGER HEIDELBERG
Issue Date
2011-04
Language
English
Article Type
Article
Citation

MEDICAL BIOLOGICAL ENGINEERING COMPUTING, v.49, no.4, pp.453 - 462

ISSN
0140-0118
DOI
10.1007/s11517-010-0730-y
URI
http://hdl.handle.net/10203/96118
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0