The mechanism of gap creation by a multifunctional nuclease during base excision repair

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 80
  • Download : 0
During base excision repair, a transient single-stranded DNA (ssDNA) gap is produced at the apurinic/apyrimidinic (AP) site. Exonuclease III, capable of performing both AP endonuclease and exonuclease activity, are responsible for gap creation in bacteria. We used single-molecule fluorescence resonance energy transfer to examine the mechanism of gap creation. We found an AP site anchor-based mechanism by which the intrinsically distributive enzyme binds strongly to the AP site and becomes a processive enzyme, rapidly creating a gap and an associated transient ssDNA loop. The gap size is determined by the rigidity of the ssDNA loop and the duplex stability of the DNA and is limited to a few nucleotides to maintain genomic stability. When the 3' end is released from the AP endonuclease, polymerase I quickly initiates DNA synthesis and fills the gap. Our work provides previously unidentified insights into how a signal of DNA damage changes the enzymatic functions.
Publisher
AMER ASSOC ADVANCEMENT SCIENCE
Issue Date
2021-07
Language
English
Article Type
Article
Citation

SCIENCE ADVANCES, v.7, no.29

DOI
10.1126/sciadv.abg0076
URI
http://hdl.handle.net/10203/312433
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0