The mechanism of gap creation by a multifunctional nuclease during base excision repair

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 81
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYoo, Jungminko
dc.contributor.authorLee, Donghunko
dc.contributor.authorIm, Hyeryeonko
dc.contributor.authorJi, Sangmiko
dc.contributor.authorOh, Sanghoonko
dc.contributor.authorShin, Minsangko
dc.contributor.authorPark, Daehoko
dc.contributor.authorLee, Gwangrogko
dc.date.accessioned2023-09-12T01:00:46Z-
dc.date.available2023-09-12T01:00:46Z-
dc.date.created2023-09-12-
dc.date.issued2021-07-
dc.identifier.citationSCIENCE ADVANCES, v.7, no.29-
dc.identifier.urihttp://hdl.handle.net/10203/312433-
dc.description.abstractDuring base excision repair, a transient single-stranded DNA (ssDNA) gap is produced at the apurinic/apyrimidinic (AP) site. Exonuclease III, capable of performing both AP endonuclease and exonuclease activity, are responsible for gap creation in bacteria. We used single-molecule fluorescence resonance energy transfer to examine the mechanism of gap creation. We found an AP site anchor-based mechanism by which the intrinsically distributive enzyme binds strongly to the AP site and becomes a processive enzyme, rapidly creating a gap and an associated transient ssDNA loop. The gap size is determined by the rigidity of the ssDNA loop and the duplex stability of the DNA and is limited to a few nucleotides to maintain genomic stability. When the 3' end is released from the AP endonuclease, polymerase I quickly initiates DNA synthesis and fills the gap. Our work provides previously unidentified insights into how a signal of DNA damage changes the enzymatic functions.-
dc.languageEnglish-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.titleThe mechanism of gap creation by a multifunctional nuclease during base excision repair-
dc.typeArticle-
dc.identifier.wosid000672818200011-
dc.identifier.scopusid2-s2.0-85110337563-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue29-
dc.citation.publicationnameSCIENCE ADVANCES-
dc.identifier.doi10.1126/sciadv.abg0076-
dc.contributor.localauthorLee, Gwangrog-
dc.contributor.nonIdAuthorYoo, Jungmin-
dc.contributor.nonIdAuthorLee, Donghun-
dc.contributor.nonIdAuthorIm, Hyeryeon-
dc.contributor.nonIdAuthorJi, Sangmi-
dc.contributor.nonIdAuthorOh, Sanghoon-
dc.contributor.nonIdAuthorShin, Minsang-
dc.contributor.nonIdAuthorPark, Daeho-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCOLI ENDONUCLEASE-IV-
dc.subject.keywordPlusSINGLE-STRANDED-DNA-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusEXONUCLEASE-III-
dc.subject.keywordPlusDEOXYRIBONUCLEIC-ACID-
dc.subject.keywordPlusLAMBDA-EXONUCLEASE-
dc.subject.keywordPlusPOLYMERASE-
dc.subject.keywordPlusCOORDINATION-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusLANDSCAPE-
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0