Theoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 61
  • Download : 0
Simple borates are attractive cathodes for lithium-ion batteries due to two main reasons: covalently bonded anions provide operating stability through suppressed oxygen loss, and the borate group (BO3) possesses the highest theoretical specific capacity for one-electron polyanion systems. In this work, we demonstrate an electrochemically superior lithium borate (LiMn0.5Fe0.4Mg0.1BO3) that delivers a near theoretical capacity (98%) of 201 mA h g(-1) at C/50, an improved rate capability of 120 mA h g(-1) at 1 C, and good capacity retention. Using ab initio modeling, the superior Li intercalation activity is explained by both stabilization of the delithiated state and increased topological cation disorder, which counter-intuitively facilitates Li transport. Our results indicate that through engineering of defect chemistry, the basic mechanism can be modified from one-dimensional to three-dimensional conduction, thereby improving kinetics. Combined with the inherent stability of the borate group, the enhanced electrochemical properties should reinvigorate search in borate chemistry for new safe and high-energy cathode materials.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2015
Language
English
Article Type
Article
Citation

ENERGY & ENVIRONMENTAL SCIENCE, v.8, no.6, pp.1790 - 1798

ISSN
1754-5692
DOI
10.1039/c5ee00930h
URI
http://hdl.handle.net/10203/306460
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0