Theoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 74
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Jae Chulko
dc.contributor.authorSeo, Dong-Hwako
dc.contributor.authorCeder, Gerbrandko
dc.date.accessioned2023-05-03T05:00:55Z-
dc.date.available2023-05-03T05:00:55Z-
dc.date.created2023-05-03-
dc.date.created2023-05-03-
dc.date.created2023-05-03-
dc.date.issued2015-
dc.identifier.citationENERGY & ENVIRONMENTAL SCIENCE, v.8, no.6, pp.1790 - 1798-
dc.identifier.issn1754-5692-
dc.identifier.urihttp://hdl.handle.net/10203/306460-
dc.description.abstractSimple borates are attractive cathodes for lithium-ion batteries due to two main reasons: covalently bonded anions provide operating stability through suppressed oxygen loss, and the borate group (BO3) possesses the highest theoretical specific capacity for one-electron polyanion systems. In this work, we demonstrate an electrochemically superior lithium borate (LiMn0.5Fe0.4Mg0.1BO3) that delivers a near theoretical capacity (98%) of 201 mA h g(-1) at C/50, an improved rate capability of 120 mA h g(-1) at 1 C, and good capacity retention. Using ab initio modeling, the superior Li intercalation activity is explained by both stabilization of the delithiated state and increased topological cation disorder, which counter-intuitively facilitates Li transport. Our results indicate that through engineering of defect chemistry, the basic mechanism can be modified from one-dimensional to three-dimensional conduction, thereby improving kinetics. Combined with the inherent stability of the borate group, the enhanced electrochemical properties should reinvigorate search in borate chemistry for new safe and high-energy cathode materials.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleTheoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder-
dc.typeArticle-
dc.identifier.wosid000355985700017-
dc.identifier.scopusid2-s2.0-84930718354-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue6-
dc.citation.beginningpage1790-
dc.citation.endingpage1798-
dc.citation.publicationnameENERGY & ENVIRONMENTAL SCIENCE-
dc.identifier.doi10.1039/c5ee00930h-
dc.contributor.localauthorSeo, Dong-Hwa-
dc.contributor.nonIdAuthorKim, Jae Chul-
dc.contributor.nonIdAuthorCeder, Gerbrand-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusLI-ION BATTERIES-
dc.subject.keywordPlusRECHARGEABLE LITHIUM BATTERIES-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusHOLLOW MICROSPHERES-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusMONOCLINIC LIMNBO3-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusPERSPECTIVE-
dc.subject.keywordPlusCHALLENGES-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0