Constrained control for systems on matrix Lie groups with uncertainties

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 235
  • Download : 0
In this paper, the constrained control of systems evolving on matrix Lie groups with uncertainties is considered. The proposed methodology is composed of a nominal Model Predictive Control (MPC), and a feedback controller. The previous work on the control of systems on manifolds is applied to design the nominal MPC, which generates the nominal trajectory. In the nominal MPC, the state and input constraints on the Lie group are transformed into the constraints on the Euclidean space. While to deal with uncertainties, the feedback control used to track the nominal trajectory is designed directly on the Lie group. The tracking error in the feedback control is proved to be bounded in invariant sets, which are further used to revise the constraints in nominal MPC. We prove that the input-to-state stability of the entire system under the proposed control methodology with respect to the disturbances can be achieved. The proposed methodology is applied to the constrained attitude control of rigid bodies with uncertainties. In the application example, the detailed mathematical proof and the comparative numerical simulation are presented to demonstrate the feasibility of the proposed methodology.
Publisher
WILEY
Issue Date
2023-03
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, v.33, no.5, pp.3285 - 3311

ISSN
1049-8923
DOI
10.1002/rnc.6574
URI
http://hdl.handle.net/10203/305171
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0