Mechanically robust all-polymer solar cells enabled by polymerized small molecule acceptors featuring flexible siloxane-spacers

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 331
  • Download : 0
Robust mechanical properties and high power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs) are both the prerequisites for their application in wearable and stretchable electronics. However, these properties typically encounter a trade-off relationship. Herein, we report the development of new polymerized small-molecule acceptors (PSMAs) containing siloxane (SiO)-based flexible spacers (FSs) and demonstrate high-performance and mechanically robust all-PSCs. The introduction of highly flexible SiO-FSs increases the mechanical ductility of all-PSCs. Importantly, the SiO-FS unit enhances the solubility of PSMAs, enabling the fabrication of high-performance all-PSCs by solution processing using a non-halogenated solvent. Therefore, a high PCE (13.5%) and crack-onset strain (COS = 15.2%) are achieved for the all-PSC based on a SiO-FS-containing PSMA (PYSiO-10), which are superior to those of the reference system without SiO-FS (PCE = 9.8% and COS = 9.6%).
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2022-10
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS CHEMISTRY A, v.10, no.38, pp.20312 - 20322

ISSN
2050-7488
DOI
10.1039/d2ta05561a
URI
http://hdl.handle.net/10203/298914
Appears in Collection
ME-Journal Papers(저널논문)CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0