Event-image Fusion Stereo using Cross-modality Feature Propagation

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 187
  • Download : 0
Event cameras asynchronously output the polarity values of pixel-level log intensity alterations. They are robust against motion blur and can be adopted in challenging light conditions. Owing to these advantages, event cameras have been employed in various vision tasks such as depth estimation, visual odometry, and object detection. In particular, event cameras are effective in stereo depth estimation to find correspondence points between two cameras under challenging illumination conditions and/or fast motion. However, because event cameras provide spatially sparse event stream data, it is difficult to obtain a dense disparity map. Although it is possible to estimate disparity from event data at the edge of a structure where intensity changes are likely to occur, estimating the disparity in a region where event occurs rarely is challenging. In this study, we propose a deep network that combines the features of an image with the features of an event to generate a dense disparity map. The proposed network uses images to obtain spatially dense features that are lacking in events. In addition, we propose a spatial multi-scale correlation between two fused feature maps for an accurate disparity map. To validate our method, we conducted experiments using synthetic and real-world datasets.
Publisher
Association for the Advancement of Artificial Intelligence
Issue Date
2022-03-01
Language
English
Citation

36th AAAI Conference on Artificial Intelligence (AAAI 22), pp.454 - 462

ISSN
2159-5399
URI
http://hdl.handle.net/10203/296344
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0