Low-temperature CO2 hydrogenation to CO on Ni-incorporated LaCoO3 perovskite catalysts

Cited 29 time in webofscience Cited 0 time in scopus
  • Hit : 284
  • Download : 0
This work introduces LaCo1-xNixO3 (x = 0, 0.1, 0.25, and 0.4) perovskite catalysts for enhancing the low temperature performance of reverse water-gas shift (RWGS) reaction. Incorporating Ni lowers the interaction between La-site and B-site, weakening the electron donation from La-site to B-site. The B-site elements with the weak interaction can be easily diffused from the bulk to form exsolved bimetallic Co–Ni alloy on the surface. This different interaction trends further control H2 dissociation activity and CO desorption that affect CO2 conversion and CO selectivity, respectively. While the Ni-incorporated catalyst shows a higher metal dispersion to enhance H2 dissociation activity and increases CO2 conversion, the La-sites with the weak electron donation further drive the strong adsorption of CO molecules to be additionally hydrogenated, eventually lower CO selectivity. However, incorporating 10 at% Ni into the B site of LaCoO3 (LaCo0.9Ni0.1O3) achieved a balanced effect between facile H2 dissociation and CO desorption to maximize RWGS activity. The LaCo0.9Ni0.1O3 catalyst displayed outstanding activity with an average CO2 conversion of 30.8%, which is close to the equilibrium conversion, and a CO selectivity of 98.8% at 475 °C over 50 h.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2021-04
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.46, no.29, pp.15497 - 15506

ISSN
0360-3199
DOI
10.1016/j.ijhydene.2021.02.085
URI
http://hdl.handle.net/10203/284570
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0