A deep learning approach to evaluate the feasibility of enzymatic reactions generated by retrobiosynthesis

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 965
  • Download : 0
Retrobiosynthesis allows the designing of novel biosynthetic pathways for the production of chemicals and materials through metabolic engineering, but generates a large number of reactions beyond the experimental feasibility. Thus, an effective method that can reduce a large number of the initially predicted enzymatic reactions has been needed. Here, we present Deep learning-based Reaction Feasibility Checker (DeepRFC) to classify the feasibility of a given enzymatic reaction with high performance and speed. DeepRFC is designed to receive Simplified Molecular-Input Line-Entry System (SMILES) strings of a reactant pair, which is defined as a substrate and a product of a reaction, as an input, and evaluates whether the input reaction is feasible. A deep neural network is selected for DeepRFC as it leads to better classification performance than five other representative machine learning methods examined. For validation, the performance of DeepRFC is compared with another in-house reaction feasibility checker that uses the concept of reaction similarity. Finally, the use of DeepRFC is demonstrated for the retrobiosynthesis-based design of novel one-carbon assimilation pathways. DeepRFC will allow retrobiosynthesis to be more practical for metabolic engineering applications by efficiently screening a large number of retrobiosynthesis-derived enzymatic reactions. DeepRFC is freely available at .
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2021-05
Language
English
Article Type
Article
Citation

BIOTECHNOLOGY JOURNAL, v.16, no.5, pp.1 - 7

ISSN
1860-6768
DOI
10.1002/biot.202000605
URI
http://hdl.handle.net/10203/283657
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0