Theory of magnetostriction for multipolar quantum spin ice in pyrochlore materials

Cited 0 time in webofscience Cited 5 time in scopus
  • Hit : 274
  • Download : 152
DC FieldValueLanguage
dc.contributor.authorAdarsh S. Patriko
dc.contributor.authorMasashi Hosoiko
dc.contributor.authorLee, SungBinko
dc.contributor.authorKim, Yong Baekko
dc.date.accessioned2020-10-12T09:55:07Z-
dc.date.available2020-10-12T09:55:07Z-
dc.date.created2020-09-05-
dc.date.created2020-09-05-
dc.date.created2020-09-05-
dc.date.created2020-09-05-
dc.date.created2020-09-05-
dc.date.created2020-09-05-
dc.date.issued2020-07-
dc.identifier.citationPHYSICAL REVIEW RESEARCH, v.2, no.3-
dc.identifier.issn2643-1564-
dc.identifier.urihttp://hdl.handle.net/10203/276515-
dc.description.abstractMultipolar magnetism is an emerging field of quantum materials research. The building blocks of multipolar phenomena are magnetic ions with a non-Kramers doublet, where the orbital and spin degrees of freedom are inextricably intertwined, leading to unusual spin-orbital entangled states. The detection of such subtle forms of matter has, however, been difficult due to a limited number of appropriate experimental tools. In this work, motivated by a recent magnetostriction experiment on Pr2Zr2O7, we theoretically investigate how multipolar quantum spin ice, an elusive three-dimensional quantum spin liquid, can be detected using magnetostriction, by examining the characteristic signatures of its magnetic-field descendent multipolar kagome ice phase, as well as that of the neighboring multipolar ordered phases in the pyrochlore materials. We provide theoretical results based on classical and/or quantum studies of non-Kramers and Kramers magnetic ions, and contrast the behaviors of distinct phases in both systems. Our work paves an important avenue for future identification of exotic ground states in multipolar systems.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.titleTheory of magnetostriction for multipolar quantum spin ice in pyrochlore materials-
dc.typeArticle-
dc.identifier.scopusid2-s2.0-85105032654-
dc.type.rimsART-
dc.citation.volume2-
dc.citation.issue3-
dc.citation.publicationnamePHYSICAL REVIEW RESEARCH-
dc.identifier.doi10.1103/PhysRevResearch.2.033015-
dc.contributor.localauthorLee, SungBin-
dc.contributor.nonIdAuthorAdarsh S. Patri-
dc.contributor.nonIdAuthorMasashi Hosoi-
dc.contributor.nonIdAuthorKim, Yong Baek-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMAGNETIC MONOPOLES-

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0