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Multipolar magnetism is an emerging field of quantum materials research. The building blocks of multipolar
phenomena are magnetic ions with a non-Kramers doublet, where the orbital and spin degrees of freedom are
inextricably intertwined, leading to unusual spin-orbital entangled states. The detection of such subtle forms
of matter has, however, been difficult due to a limited number of appropriate experimental tools. In this work,
motivated by a recent magnetostriction experiment on Pr2Zr2O7, we theoretically investigate how multipolar
quantum spin ice, an elusive three-dimensional quantum spin liquid, can be detected using magnetostriction,
by examining the characteristic signatures of its magnetic-field descendent multipolar kagome ice phase, as
well as that of the neighboring multipolar ordered phases in the pyrochlore materials. We provide theoretical
results based on classical and/or quantum studies of non-Kramers and Kramers magnetic ions, and contrast the
behaviors of distinct phases in both systems. Our work paves an important avenue for future identification of
exotic ground states in multipolar systems.
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I. INTRODUCTION

The development of a robust understanding of emergent
phenomena in strongly correlated quantum systems [1,2] ulti-
mately requires deep insight into the many-body ground state,
and the excitations it can support. This historically successful
paradigm has been challenged in recent times by two promi-
nent examples: quantum spin liquids (QSLs) and multipolar
ordered states (MPOs). QSLs, which are long-range entan-
gled correlated paramagnets, support deconfined fractional-
ized excitations (spinons) that couple to an emergent gauge
field [3,4]. QSLs arise from a variety of mechanisms, from
geometrical frustration [5,6] to anisotropic bond-dependent
interactions [7–9]. The lack of magnetic ordering presents an
obvious challenge as to its detection with conventional probes,
and despite efforts from neutron scattering [10,11], a true
smoking-gun signature has proven to be elusive. Analogously,
MPOs also defy detection by conventional probes, despite
falling under the purview of spontaneous symmetry breaking.
These ordered states, which arise from spin-orbit coupling
and crystalline electric fields (CEFs) placing restrictions on
localized electron orbitals’ shapes, do not possess just a sim-
ple dipolar moment. Instead, they support nontrivial charge
and magnetic density distributions (described by higher rank
multipolar moments [12,13]), which fail to directly couple
to neutrons and other probes of ordering, and have been
appropriately named “hidden orders.”
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The central question that remains for both of these phe-
nomena is the following: How can the existence and properties
of QSLs’ and MPOs’ interacting many-body ground states be
examined if they shy away from conventional probing tools?
Some answers to this question have recently been found,
where novel elastic-based techniques in multipolar heavy
fermion systems seem to indicate the onset of MPOs [14–17].
Motivated by such experiments, we ask whether the exper-
imentally reticent QSLs can be exposed if they arise from
interacting multipolar moments.

The pyrochlore oxide family provides a unique setting
for the closer examination of the posed question. In these
compounds, local CEFs result in low-lying Kramers or non-
Kramers ground states [18]. The Kramers ions typically host
dipolar moments, and as such are more receptive to con-
ventional probing tools [19–25]. However, the non-Kramers
doublet found in Pr2Zr2O7 hosts time-reversal even electric
quadrupolar moments (and an accompanying magnetic dipo-
lar moment) [26,27]. These moments reside on a pyrochlore
lattice, where frustrated pairwise interactions allow the possi-
ble existence of a type of QSL with an emergent U(1) gauge
field and accompanying bosonic spinons, known as quantum
spin ice [10,28–34].

In this work, we propose that magnetostriction (length
change under an external magnetic field) provides a sharp
and distinct signature of quantum spin ice formed from non-
Kramers multipolar moments. The current work is directly
motivated by a recent experiment on the quantum spin ice
candidate material, Pr2Zr2O7 [35]. In order to validate this
proposal, we contrast its difference by presenting the dis-
tinctive length change behaviors of possible ordered states in
Kramers and non-Kramers ions. In doing so, we establish a
comprehensive theory of magnetostriction for a number of
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possible emergent phases in both non-Kramers and Kramers
pyrochlore systems. The findings are based on corroborating
classical analysis and exact diagonalization of quantum mod-
els on the pyrochlore lattice. Our theoretical results provide
a means to identify the existence of a QSL’s many-body
ground state, by focusing on the signatures of its field-induced
descendent multipolar kagome ice phase, and to distinguish
the various ordered phases in the pyrochlore family. Our
work lays the foundations upon which targeted experimental
investigations can be conducted on QSLs, and provides a new
direction of inquiry in the field of multipolar magnetism.

II. PSEUDOSPIN-1/2 MODEL OF
PYROCHLORE MATERIALS

In the R2M2O7 oxide family, the local moments arise from
the f electrons of the R3+ rare-earth-metal ions. Importantly,
the surrounding cage of O2− ions subject the f electrons to
a local D3d crystalline electric field (CEF), which splits the J
multiplet of isolated R3+ ions to yield low-lying Kramers or
non-Kramers doublet ground states, depending on the nature
of the R3+ ions. In Yb2Ti2O7 [24,36–39], for example, the
J = 7/2 multiplet is split to yield Kramers ground states
that support conventional magnetic dipole moments, which
can be efficiently represented by the pseudospin-1/2 operator
S = J. In the intriguing candidate quantum spin-ice material,
Pr2Zr2O7, the J = 4 degenerate manifold is partially lifted to
yield non-Kramers (doublet) ground states of an even number
of f electrons. As a consequence, these support, in addition
to a conventional magnetic dipole moment, more exotic time-
reversal even quadrupolar moments. The multipolar moments
can be efficiently represented by the pseudospin components,
Sx = JxJz, Sy = JyJz, and Sz = Jz, where the overline in-
dicates a symmetrized product [26]. In the local frame of
each sublattice (as described in Appendix A), members of the
R2M2O7 family obey the following generic nearest-neighbor
pseudospin-1/2 model [26,27,40],

H =
∑
〈i j〉

{
JzzSz

i S
z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±(γi jS+
i S+

j + γ ∗
i jS

−
i S−

j )

+ Jz±
[
Sz

i (ζi jS+
j + ζ ∗

i jS
−
j ) + (ζi jS+

i + ζ ∗
i jS

−
i )Sz

j

]}
, (1)

where
∑

〈i j〉 is a sum over nearest neighbor sites i and j on the
pyrochlore lattice, γi j and ζi j = −γ ∗

i j are unimodular complex
numbers listed in Appendix A. Jzz > 0 is an antiferromagnetic
interaction that gives rise to the celebrated two-in, two-out
spin ice rule. Because of the quadrupolar nature of Sx,y in
the non-Kramers variety, Jz± = 0 by time-reversal symmetry.
We note that, in anticipation of the discussion to follow,
the exchange coupling constants are conventionally taken to
be independent of applied magnetic fields, as the ground-
state doublet in Pr2Zr2O7 is well separated from its excited
states [10].

Figure 1 presents the T = 0 classical phase diagram asso-
ciated with Eq. (1) with Jz± = 0. This classical non-Kramers
phase diagram provides a zoo of possible phases: a classi-

FIG. 1. Classical phase diagram of Eq. (1) for non-Kramers ions
(Jz± = 0). The depicted phases are multipolar spin ice (MSI) of T1g,
coplanar antiferroquadrupolar (cAFQL) of T2g, a second coplanar
antiferroquadrupolar (cAFQL) of T1g, and ferroquadrupolar (FQL) of
Eg symmetry. Here we use the subscript L to indicate orderings in the
local basis (Appendixes A and N). cAFQL and cAFQL are related to
each other by a local C4z rotation on each sublattice.

cal two-in, two-out multipolar spin ice (MSI) phase of T1g

symmetry, a coplanar antiferroquadrupolar (cAFQL) phase
with T2g symmetry, another coplanar antiferro-quadrupolar
(cAFQL) of T1g symmetry, and a ferroquadrupolar (FQL) of
Eg symmetry [41]. Here we use the subscript L to indicate
orderings in the local basis.

Although we have so far discussed classical multipolar
phases, it is highly suggestive from parton mean-field theory
(known as gauge mean field theory, gMFT [30,31]) studies
that quantum phases are the descendants of these parent
classical phases. Indeed, in gMFT, the classical SI phase
gets promoted to a U(1) quantum spin-liquid phase, which is
characterized by the existence of deconfined bosonic spinons
(magnetic monopoles, in the spin-ice literature [42]) coupled
to a U(1) gauge field [28]. The other classically ordered phases
get promoted to Higgs phases in gMFT, where the bosonic
monopole condenses thus eliminating the emergent gauge
field. In the current work, instead of using gMFT, we examine
the quantum model using exact diagonalization, which indeed
confirms the relevant phase diagram (Appendix H).

III. ELASTIC STRAIN COUPLING TO LOCAL MOMENTS

In this section, we examine the coupling of the local R3+
moments to the elastic normal modes. The cubic nature of the
underlying Bravais lattice constrains (by Oh point group) the
elastic energy to be of the form,

Flattice = cB

2

(
ε2

B

) + c11 − c12

2

(
ε2
μ + ε2

ν

)
+ c44

2

(
ε2

xy + ε2
yz + ε2

xz

)
, (2)

where the crystal’s deformation is described by the compo-
nents of the strain tensor εik , and ci j is the elastic modulus
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tensor describing the stiffness of the crystal. Here cB is the
bulk modulus, εB ≡ εxx + εyy + εzz is the volume expansion of
the crystal, εν ≡ (2εzz − εxx − εyy)/

√
3 and εμ ≡ (εxx − εyy)

are cubic normal mode lattice strains. Because of the sublat-
tice nature of pyrochlore lattice, we specify that the elastic
strain tensors, magnetic fields, as well as local moments,
written in the local basis of a given sublattice α possess
a sublattice index, i.e., Sx,y,z

α , hx,y,z
α , εα

i j . In the global basis
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we write the same quantities
without the sublattice index. In coupling the elastic strain
to the localized moments, we enforce the local D3d point
group symmetry of the surrounding CEF locally. We present
in Appendixes B and C the relationships between local and
global quantities and their transformations under D3d .

First, since the non-Kramers XY pseudospin components
are time-reversal even electric quadrupolar moments, they can
couple linearly to elastic strain as

FXY,NK = −k1
[
Sx

α

(
εα

xx − εα
yy

) − 2Sy
αεα

xy

]
− k2

[
Sx

αεα
xz + Sy

αεα
yz

]
, (3)

where we have introduced Einstein summation notation for α.
We explicitly denote the non-Kramers case by the subscript
NK, and k1,2 are phenomenological coupling constants. The
Z pseudospin component contains the time-reversal odd mag-
netic dipole moment and can only couple to the elastic strain
in the presence of a time-reversal breaking external magnetic
field, h, to yield

FZ = −g1Sz
α

[(
εα
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)
hx

α − 2εα
xyhy

α

] − g4Sz
αhz

α

[
εα
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]
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α

[
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xzh
x
α + εα

yzh
y
α

] − g3Sz
αhz

α

[
εα

xx + εα
yy

]
, (4)

where g1,2,3,4 are coupling constants, and we again employ
Einstein summation notation for α. Equation (4) is common
to both non-Kramers and Kramers ions.

IV. MAGNETOSTRICTION BEHAVIORS OF
NON-KRAMERS PYROCHLORE MATERIALS

Under an applied magnetic field, the magnetic dipole mo-
ment couples at linear order and to the quadrupolar moments
at quadratic order,

Hmag,NK = −h ·
∑

t

3∑
α=0

ẑαSz
t,(α)

− δ1

∑
t

3∑
α=0

(
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α

)2− (
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α

)2]
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αhy

αSy
t,(α)

)
,

(5)

where
∑

t sums over all up tetrahedra and Sμ
t,(α) is the Sμ

moment on sublattice α of tetrahedron t . The second term in
Eq. (5) is a quadratic-in-h coupling to the quadrupolar mo-
ments, which is perturbatively weak as compared to the mag-
netic field coupling to the dipole moments; we include small
phenomenological quantities δ12, to represent this diminutive
nature. The strength of the quadratic background in the length
change depends on δ1,2. Indeed, the value of δ1,2 depends
inversely on the gap (�) between the ground state and excited
states, δ1,2 ∼ 1/�. In the context of Pr2Zr2O7, the gap is rel-
atively large (� ≈ 9.5 meV [10]), thus physically justifying
the minuscule magnitude of δ1,2. In other pyrochlore materi-
als, such as Tb2Ti2O7, this gap is almost an order of magnitude
smaller (� ≈ 1.4 meV [44]), and consequently the quadratic
background to the magnetostriction is more dominant [45,46].
Applying the strategy described inAppendix D, we derive the
following length change expressions along the � = (1, 1, 1)
and � = (1, 1, 0) directions under h = h√

3
(1, 1, 1),

(
�L

L
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, (7)

where the subscript and superscript in ( �L
L ) refer to the

magnetic field and length change directions, respectively. We
note that the pseudospin operators are taken to be understood
as their expectation value with respect to the ground state.

We note that we have redefined the couplings in Eqs. (6)
and (7) from Eqs. (3) and (4) for brevity, i.e., g1 ≡ g1√

6
, g2 ≡

g2

2
√

3
, g3 ≡ 2g3

3
√

3
, and g4 ≡ g4

3
√

3
, and k1 ≡ k1√

3
and k2 ≡ k2√

6
.

A striking observation of Eq. (6) is that uniform ferrolike
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FIG. 2. Length change, �L
L , under applied [111] magnetic field, h for spin-ice phase J± = 0.02Jzz, J±± = 0.05Jzz (a) along the (1,1,1)

direction and (b) along the (1,1,0) direction. For an infinitesimal field, the classical spin ice enters into the degenerate Kagome spin-ice
phase (denoted by yellow shaded region). The quantum spin ice is, however, stable for a small window of magnetic field strengths [43];
we schematically denote this region by the orange shaded region (the size of the region is amplified for ease of viewing). For large fields,
the system resides in a fully polarized state (indigo-blue shaded region). The green, blue, and red curves [squares] denote the length change
arising from the XY pseudospin (quadrupolar), Z pseudospin (dipole), and combined contributions, respectively, from classical [32 site exact
diagonalization] studies. The dipole plot line is (slightly) purposely shifted from the total length change plot line to more easily visualize the
individual contributions. The classical (1,1,0) length change possesses two behaviors in the kagome ice phase, due to the degeneracy of the
kagome ice manifold being reflected in the length change [Eq. (7)]. The average over the degenerate branches (red dashed line) matches up
with the exact diagonalization (ED) result for the (1,1,0) direction. The values of the chosen lattice-pseudospin couplings are presented in
Appendix F.

ordering of the XY local moments results in vanishing length
contributions from the quadrupolar moments. This scenario
occurs for when J±± = 0 and only Jzz, J± > 0. To have
nonvanishing contributions from the quadrupolar moments,
the � = (1, 1, 1) length change clearly requires the assistance
of J±± 	= 0 to give a nonuniformity (or even canting) to
the ordering on each sublattice. For � = (1, 1, 0), a ferrolike
ordering still yields a finite length change contribution from
the quadrupolar moments.

A. Unique magnetostriction signature of multipolar spin ice

We present in Fig. 2 the unique magnetostriction behavior
for the MSI phase along the (1,1,1) and (1,1,0) directions
under an applied field along the [111] direction. The solid
lines are obtained from a classical computation, while the
squares are obtained from 32-site exact diagonalization (ED)
of the quantum model. We describe in Appendixes G and H
the procedure for these respective techniques. The depicted
shaded regions can be understood as a battle between two
energy scales: spin exchanges and magnetic field. For small
fields, the classical system enters into a kagome ice (KI)
phase, where the spin on sublattice 0 is fully polarized, while
the remaining three spins conspire to satisfy the overall two-
in, two-out ice rules of the exchange terms over an entire
tetrahedron [47–49]. For the quantum model, the U(1) QSL
survives for small window of magnetic field strength [43] (de-
picted by an amplified orange shaded region in Fig. 2, for ease

of viewing), until it enters into the quantum kagome ice phase
(described below). In the classical KI phase, the extensive
degeneracy of the classical MSI phase partially remains within
each kagome layer [50,51]. This can be easily noticed on a
given tetrahedron where three possible states satisfy the two-
in, two-out ice rules: {Sz

(0), Sz
(1), Sz

(2), Sz
(3)} : (KIa ) = {↑,↑,↓

,↓}, (KIb) = {↑,↓,↑,↓}, (KIc) = {↑,↓,↓,↑}. In the quan-
tum limit, the ground state is that of a superposition over this
degenerate manifold and is named quantum kagome ice, QKI
(when discussed in the context of the simplified XXZ model,
where J±± = 0) [52,53]. Finally, in the large-field limit, all the
pseudospins are polarized: This state corresponds to the pseu-
dospins on sublattice-0 (sublattice-1,2,3) pointing out of (into)
a given tetrahedron. Interestingly, an island of XY quadrupolar
ordering develops for intermediate fields during the transition
between the KI and fully polarized state, where the XY
orderings are not identical on the sublattices. This results in
a sharp discontinuity in the XY length change, accompanied
by a “flip” in the z component on sublattice 1 to Sz < 0 (or any
of the sublattices that have Sz = 1/2), and an alignment into
the fully polarized state: {Sz

(0), Sz
(1), Sz

(2), Sz
(3)} = {↑,↓,↓,↓}.

We present in Appendix I the behavior of the local pseudospin
configurations on each sublattice under the [111] magnetic
field.

Both classical total length changes (the sum of the
quadrupolar and dipolar contributions) in Fig. 2 possess a
sharp discontinuity which originates from the transition from
KI to the fully polarized phase. Furthermore, both direc-
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tions possess an additional quadratic-in-h scaling behavior
(imposed on top of a linear-in-h scaling from the dipole
moments). This arises from the ∼h2 coupling of the mag-
netic field to the quadrupolar moments in Eq. (5). A crucial
difference between the two length change directions is mainly
with the dipole contributions to the respective length change
direction. First, in the fully polarized limit, (1,1,1) and (1,1,0)
directions have opposite signs in their total length change.
Second, and more interestingly, the (1,1,0) direction has two
possible (dipole) length behaviors from the classical compu-
tation in the KI phase, while there is a unique behavior for
the (1,1,1) direction. This is a result of the degeneracy of the
KI phase. For the (1,1,1) direction, all three degenerate KI
states (KIa, KIb, KIc) give the same expressions for the length
change when these configurations are inserted into Eq. (6). For
the (1,1,0) direction, however, the length-change expression of
Eq. (7) is sensitive to which of the three KI degenerate states is
chosen. In particular, (KIa, KIb) have the same length-change
behavior when their respective configurations are inserted in
to Eq. (7), but (KIc) has a different length-change expression.
This difference can be traced to the dipole terms unique
to the (1,1,0) direction in Eq. (7). Depending on which KI
degenerate solution is chosen, we can thus get one of the
two branches as depicted in Fig. 2(b), and subsequently the
sign of the dipole contribution for the (1,1,0) direction can
flip (or be retained) in the fully polarized limit. In a realistic
system, it is possible that one may obtain an average over the
three possible KI configurations. Interestingly, this “averaged”
behavior is precisely what the ED computation of the quantum
model finds, corroborating the idea that the quantum ground
state can be thought as the superposition of three degenerate
configurations. All of these behaviors thus provide a sharp
signature for the existence of a MSI phase at h = 0.

The ED results match well with the classical solution’s
(1,1,1) direction, especially in the region of KI and the fully
polarized state. Although the quadrupolar peak is broadened
out as compared to its classical counterpart, we attribute this
to possible finite-size effects of ED, quantum fluctuations,
and the challenge of extracting the symmetry-broken order
parameter. We provide a detailed explanation of the latter
point in Appendix H. For the (1,1,0) direction, more care
needs to be taken to understand its apparent difference with
its classical counterpart. In particular, the obtained ED ground
state is nondegenerate, with the z-spin expectation value on
each of sublattice 1, 2, 3 being − 1

6 . This appears to suggest
that the quantum ground state is an equal superposition over
all the three degenerate classical kagome ice states (on a given
tetrahedron), resulting in the single possibility for the dipole
length change. For completeness, and to enable comparison
with experiments, we present the length change under a
[110] magnetic field in Appendix J. Comparing the relatively
smooth magnetostriction features for the [110] field to the
peak structure for [111] field highlights the strong anisotropy
and selection rules of magnetostriction.

B. Length change behaviors of non-Kramers multipolar
ordered phases

In order to clearly distinguish SI signatures from the other
magnetically (or quadrupolar) ordered ground states, it is

pertinent to consider the magnetostriction behavior of the
symmetry-broken ordered phases. It is beneficial to first write,
in terms of the classical multipolar order parameters (using
Appendix N), both the interacting pseudospin model,

Htet
NK = 1

2

[
3Jzzm

2
A2

− 6J±m2
E + (2J± − 4J±±)m2

T1,B

− Jzzm2
T1,A

+ (2J± + 4J±±)m2
T2

]
(8)

and the � = (1, 1, 1) magnetostriction expression (Eq. 6),(
�L

L

)[111]

(1,1,1),NK

= Q0
[
mx

T2
+ my

T2
+ mz

T2

] − hC0mA2

− h(C1 + C2)
(
mx

T1,A
+ my

T1,A
+ mz

T1,A

)
, (9)

where we drop the gerade subscript for the order parame-
ters (described in Fig. 1) for brevity, and collect the con-

stants under Q0 = 8(2k1+k2 )
3
√

3c44
, D0 = 4

√
3(−8g1+4g2−3g3+6g4 )

9c44
, D1 =

8
√

3(4g1+2g2−3g3+6g4 )
27c44

, and D2 = 2(g3+g4 )
3
√

3cB
. Figure 3 depicts the

magnetostriction behavior for � = (1, 1, 1) of the various
multipolar ordered phases discussed earlier; the vertical
dashed lines indicate jump discontinuous behaviors in the
ordering. Specifically, both the cAFQL and cAFQL have jump
discontinuous behaviors which correspond to Sz

(0) becoming
fully polarized. The cAFQL also has the distinction of having
a finite length change in the absence of an external field. This
is apparent from Eq. (9), where the cAFQL order parameter is
present even for h = 0. The FQL± states do not possess any
nonanalytic behavior in their length changes. Indeed, the local
moments undergo a smooth and gradual change into the fully
polarized state. We note that the FQL+ and FQL− behaviors
are related by a local C4z rotation of the pseudospins, where
the ± denote J±± > 0 and J±± < 0, respectively; these dif-
ferent parameter choices of the same phase highlight the in-
dependence of the qualitative features of the magnetostriction
on the precise value of the exchange couplings.

Because of these mentioned characteristics, each of the
MPOs have their own distinct signature that allows each of
them to be identified individually, as well as be distinguished
from MSI. The FQL± states are the easiest to identify, as they
possess a smooth change in the length change; this gradual
change is not present in any of MSI nor the other MPOs.
cAFQL can also be distinguished as it holds the honor of being
the only non-Kramers phase that has a finite length change in
the absence of an external field. cAFQL and MSI share some
similarities, as both possess a jump discontinuity in the total
length change. However, a qualitative distinction is the lack
of a jump or peak in quadrupolar contribution for cAFQL, as
compared to MSI. Furthermore, the MSI magnetostriction has
a dominant linear-in-h scaling behavior for the MSI before the
jump, while the cAFQL has an overarching nonlinear scaling
before Sz

(0) becomes fully polarized. All of these differences
demonstrate the uniqueness of the non-Kramers MSI and
MPOs magnetostriction signatures.

V. COMPARISON WITH KRAMERS MAGNETICALLY
ORDERED PHASES

A natural comparison is with the more prevalent Kramers
ions of the pyrochlore family, which supports the usual mag-
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FIG. 3. Length change, �L
L , along the (1,1,1) direction under applied [111] magnetic field, h, for the various classically multipolar ordered

phases of non-Kramers ions (Jz± = 0): (a) coplanar antiferroquadrupolar (cAFQL), (b) a second coplanar antiferroquadrupolar (cAFQL), and
(c) and (d) ferroquadrupolar (FQL±) where the ± denote J±± > 0 and J±± < 0, respectively. The dashed vertical lines denote regions of
discontinuity in the length change, intimately linked to the discontinuity arising from Sz

(0) becoming fully polarized. The green, blue, and
red curves denote the length change arising from the XY pseudospin (quadrupolar), Z pseudospin (dipole), and combined contributions,
respectively. Just as in Fig. 2, the dipole plot line is (slightly) purposely shifted from the total length change plot line to more easily visualize
the individual contributions. The values of the chosen exchange couplings and lattice-pseudospin couplings are presented in Appendix F.

netic dipole moments Jx,y,z. Key differences between Kramers
and non-Kramers ions are (i) Jz± 	= 0 which causes mixing
between the spin-ice and splayed ferromagnet phases and
(ii) the magnetic field can couple at linear order to the XY
components of the pseudospins for Kramers ions. These dif-
ferences are a consequence of the pseudospin components
being mere dipole moments and are thus odd under time
reversal. We present the classical T = 0 phase diagram and
the magnetostriction behaviors of the magnetically ordered
phases in Appendixes K and L. The classical phase diagram
for Kramers ions possesses a variety of broken-symmetry
phases: a generalized splayed ferromagnet (SFM), a copla-
nar antiferromagnetic Palmer-Chalker (PC) phase, and a 1D
manifold of antiferromagnetic states. The magnetostriction
behaviors for Kramers ions possess jump discontinuities in
the length change for increasing field strengths, and for certain
phases there are multiple such discontinuities.

We can draw specific contrasts between the associated
Kramers and non-Kramers states. For instance, the 1D
manifold-like states in Kramers case have a discontinuity,
while the corresponding FQL states of non-Kramers ions
undergo smooth length change under increasing field. Anal-
ogously, SFM and cAFQL can be distinguished as SFM has

a vanishing length change at zero magnetic field, while for
cAFQL it is finite. Finally, PC and cAFQL can be differenti-
ated as PC has two discontinuous points in the length change,
while cAFQL has only one. Such key differences in the
length change behaviors of Kramers and non-Kramers ions
highlight the broad applicability of magnetostriction in py-
rochlore materials. Furthermore, since Kramers ions are more
commonly examined with conventional probes of magnetic
ordering (most notably neutron scattering), magnetostriction
can thus serve as useful corroborating evidence. We contrast
this with the non-Kramers situation, where there is a dearth
of probes available, and where each of MPOs possess distinct
features (Fig. 3) that allows each of them to be individually
identified (and distinguished from non-Kramers MSI). This
comparison thus also serves to emphasize the suitability of
magnetostriction to non-Kramers ions.

VI. DISCUSSION

In this work, we proposed that magnetostriction is an
ideal probe of multipolar quantum spin-ice ground states
and multipolar ordered states in the pyrochlore oxide family.
Employing a symmetry-based approach, we constructed an
elastic strain coupling to the local rare-earth-metal moments,
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in the presence of an external magnetic field. We studied all
the possible classically ordered states of the pseudospin-1/2
model, and we also employed a 32-site exact diagonalization
of the quantum model to examine the multipolar quantum
spin ice in non-Kramers ions. We found that the multi-
polar quantum spin-ice phase in non-Kramers compounds
has a unique magnetostriction behavior that is distinct from
the other multipolar ordered phases (which themselves have
unique behaviors). We note that while we discovered the KI
phase under a finite magnetic field for the parent multipolar
spin-ice phase, quantum Monte Carlo studies on the simplified
XXZ model suggest that the so-called “monopole supersolid”
ordered phase could also develop into a KI when subjected to a
magnetic field [43]. This KI is, however, preceded by the rapid
demise of the XY orderings, which may provide an additional
feature to the magnetostriction.

Our concrete theoretical results for magnetostriction under
[111] and [110] magnetic fields provide a guide for targeted
experimental investigations for MSI. Indeed, recently pre-
sented experimental data of magnetostriction in Pr2Zr2O7 [35]
seems to be qualitatively similar to our results. Experimentally
examining the length change for [110] magnetic field would
be an important next step in verification of our selection
rules of magnetostriction. Our study is also broadly appli-
cable to other multipolar quantum spin candidate materials,
Pr2Sn2O7 [54–56] and Pr2Hf2O7 [57–59]. In terms of future
work, it would be interesting to examine finite-temperature
length-change behaviors, such as thermal expansion. As well,
identifying the nature of the finite-field quantum kagome ice
state of the generic pyrochlore model (as well its possible
connection to the resonating plaquette state in the simplified
XXZ model [29,43]) would be an important study. Such
studies would provide insight into the nontrivial fractional-
ized excitations predicted in quantum spin ice, such as the
emergent monopoles and photon. To further place our work
in the physically relevant context of Pr2Zr2O7, it would also
be an interesting and important future study to examine and
incorporate the impacts of disorder [11,60] in the context
of magnetostriction. Finally, it would also be intriguing to
examine the study of magnetostriction in other frustrated
lattices (with different symmetries) which are candidates for
QSLs. It would be fascinating to explore whether those sys-
tems also possess strong magnetostriction signatures, for both
their proposed QSL and/or any nearby ordered phases.

Note added. After completing our work, we became aware
of a parallel and independent theoretical work by Subhro
Bhattacharjee and Roderich Moessner, concerning quantum
spin-ice physics of Pr2Zr2O7 [61]. We thank them for com-
municating their results to us.

ACKNOWLEDGMENTS

This work was supported by NSERC of Canada and the
Center for Quantum Materials at the University of Toronto.
Y.B.K. is supported by the Killam Research Fellowship of the
Canada Council for the Arts. Computations were performed
on the Niagara supercomputer at the SciNet HPC Consor-
tium and on the Graham supercomputer of Compute Canada.
SciNet is funded by the Canada Foundation for Innovation;

the Government of Ontario; Ontario Research Fund, Research
Excellence; and the University of Toronto. We thank the
Center for Advanced Computation at the Korea Institute for
Advanced Study for providing computing resources for this
work. S.B.L. is supported by the National Research Founda-
tion Grant No. NRF2017R1A2B4008097. M.H. is supported
by the Japan Society for the Promotion of Science through
the Program for Leading Graduate Schools (MERIT) and
Overseas Challenge Program for Young Researchers. We
thank Satoru Nakatsuji, Mingxuan Fu, and Nan Tang for
helpful discussions on their experimental data on Pr2Zr2O7

and sharing their insights.
Y.B.K. conceived and supervised the research. A.S.P. and

M.H. performed the calculations in this work. S.B.L. provided
important preliminary results regarding the pseudospin-lattice
couplings and contributed to the discussion of the overall
results. All authors contributed to writing the paper.

The authors declare no conflict of interest.

APPENDIX A: LOCAL BASES AND PSUEDOSPIN
MODEL MATRICES

The pyrochlore lattice is an underlying face-centred cubic
(fcc) Bravais lattice with four sublattices per unit cell. We
define the following local bases on each sublattice α in Table I.

Within the local bases, we employ the γi j matrix, which
has the following matrix representation:

γ=

⎛
⎜⎜⎝

0 1 w w2

1 0 w2 w

w w2 0 1
w2 w 1 0

⎞
⎟⎟⎠, (A1)

where w = e2π i/3.

APPENDIX B: SYMMETRY TRANSFORMATIONS OF
PSEUDOSPINS, MAGNETIC FIELD, AND ELASTIC

STRAIN UNDER D3d

The D3d point group can be generated by the two following
elements, which written in an orthonormal basis (R3 space)
are

S−
6 =

⎛
⎜⎝

1
2

√
3

2 0

−
√

3
2

1
2 0

0 0 −1

⎞
⎟⎠ C ′

21 =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠,

where S−
6 is an improper rotation about the z axis by π/3, and

C ′
21 is a π rotation about the y axis. Using these generators, we

TABLE I. Local sublattice basis vectors.

α 0 1 2 3

ẑα
1√
3
(1, 1, 1) 1√

3
(1, −1, −1) 1√

3
(−1, 1, −1) 1√

3
(−1, −1, 1)

x̂α
1√
6
(−2, 1, 1) 1√

6
(−2, −1, −1) 1√

6
(2, 1, −1) 1√

6
(2,−1, 1)

ŷα
1√
2
(0,−1, 1) 1√

2
(0, 1, −1) 1√

2
(0,−1, −1) 1√

2
(0, 1, 1)
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can transform the pseudospin-1/2 quantities (on sublattice α)
as

Sx
α

S−
6−→ −1

2
Sα

x −
√

3

2
Sα

y , Sx
α

C′
21−→ Sα

x

Sy
α

S−
6−→

√
3

2
Sα

x − 1

2
Sα

y , Sy
α

C′
21−→ −Sα

y

Sz
α

S−
6−→ Sα

z , Sz
α

C′
21−→ −Sα

z . (B1)

hx
α

S−
6−→ −1

2
hx

α −
√

3

2
hy

α, hx
α

C′
21−→ −hx

α

hy
α

S−
6−→

√
3

2
hx

α − 1

2
hy

α, hy
α

C′
21−→ hy

α

hz
α

S−
6−→ hα

z , hz
α

C′
21−→ −hz

α. (B2)

And finally, the elastic tensor transforms in the usual manner,
i.e., ←→ε → A←→ε AT , where A is the symmetry element.

APPENDIX C: RELATING QUANTITIES IN LOCAL AXES
TO GLOBAL AXES

We present the transformation of the relevant quantities
from the local axes to the global axes. The vector-like
quantities such as the magnetic field are transformed using
hα = P−1

α h, and the tensor strain is transformed using εα =
P−1

α ε Pα . Here Pα is the change of basis matrix for sublattice
α; i.e., its columns contain the basis vectors of the given
subalttice as denoted in Table I. For concreteness, we present
the local-to-global magnetic field transformations below:⎛

⎜⎝
hx

(0)

hy
(0)

hz
(0)

⎞
⎟⎠ =

⎛
⎜⎜⎝

−2hx+hy+hz√
6

hz−hy√
2

hx+hy+hz√
3

⎞
⎟⎟⎠, (C1)

⎛
⎜⎝

hx
(1)

hy
(1)

hz
(1)

⎞
⎟⎠ =

⎛
⎜⎜⎝

− 2hx+hy+hz√
6

hy−hz√
2

hx−hy−hz√
3

⎞
⎟⎟⎠, (C2)

⎛
⎜⎜⎝

hx
(2)

hy
(2)

hz
(2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2hx+hy−hz√
6

− hy+hz√
2

− hx−hy+hz√
3

⎞
⎟⎟⎠, (C3)

⎛
⎜⎝

hx
(3)

hy
(3)

hz
(3)

⎞
⎟⎠ =

⎛
⎜⎜⎝

2hx−hy+hz√
6

hy+hz√
2

− hx+hy−hz√
3

⎞
⎟⎟⎠. (C4)

We reiterate that hx,y,z are magnetic field components in the
global basis (i.e., no sublattice index).

APPENDIX D: GENERALIZED MAGNETOSTRICTION
EXPRESSIONS FOR NON-KRAMERS IONS

To determine the magnetostriction (or total length change)
expression ultimately requires knowledge of the relative
length change in terms of the elastic strain components. In that
respect, we appeal to the relative length change expression of
(as previously derived in Ref. [62])

(
�L

L

)
�

=

3∑
i, j=1

εi j 
̂i
̂ j , (D1)

where εi j ≡ 1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
) is the standard strain tensor (in the

global basis) and 
̂i is the ith component of the unit vector

̂. As is clear from Eq. (D1), determining εi j is essential to
find the fractional length change. To do so, the strain tensor
in Eqs. (3) and (4) first needs to be rewritten in the global
basis, using the change of basis described in Appendix C. This
change of basis ensures that all elastic strain-dependent quan-
tities are written in terms of elastic strain normal modes in the
global basis εμ,ν,xy,xz,yz. The subsequent total elastic free en-
ergy, Felastic = Flattice + FXY,NK + FZ, is then minimized with
respect to the elastic strain normal modes to yield extremized
elastic strain expressions, presented in Appendix E. Finally,
the extremized elastic strains are inserted into Eq. (D1) to
yield the generalized magnetostriction expressions along the
direction of interest, �.

APPENDIX E: EXTREMIZED ELASTIC STRAIN TENSOR EXPRESSIONS FOR NON-KRAMERS IONS

Extremizing the elastic free energy with respect to the normal modes ( δFelastic
δεi j

= 0) yields the expressions in Eqs. (E1)–(E6).
We emphasize that the above expressions can be used [in combination with Eq. (D1)] when finding the length change along any
direction of interest:

ε∗
μ = g1 − g2

c11 − c12

[
hx

( − Sz
(0) − Sz

(1) + Sz
(2) + Sz

(3)

) + hy
(
Sz

(0) − Sz
(1) + Sz

(2) − Sz
(3)

)]
+ k1 − k2

2(c11 − c12)

[√
3
(
Sx

(0) + Sx
(1) + Sx

(2) + Sx
(3)

) − (
Sy

(0) + Sy
(1) + Sy

(2) + Sy
(3)

)]
, (E1)

ε∗
ν = g1 − g2√

3(c11 − c12)

[
hx

(
Sz

(0) + Sz
(1) − Sz

(2) − Sz
(3)

) + hy
(
Sz

(0) − Sz
(1) + Sz

(2) − Sz
(3)

) + 2hz
( − Sz

(0) + Sz
(1) + Sz

(2) − Sz
(3)

)]

− k1 − k2

2(c11 − c12)

[(
Sx

(0) + Sx
(1) + Sx

(2) + Sx
(3)

) +
√

3
(
Sy

(0) + Sy
(1) + Sy

(2) + Sy
(3)

)]
, (E2)

033015-8



THEORY OF MAGNETOSTRICTION FOR MULTIPOLAR … PHYSICAL REVIEW RESEARCH 2, 033015 (2020)

ε∗
B = g3 + g4

cB

[
hx

(
Sz

(0) + Sz
(1) − Sz

(2) − Sz
(3)

) + hy
(
Sz

(0) − Sz
(1) + Sz

(2) − Sz
(3)

) + hz
(
Sz

(0) − Sz
(1) − Sz

(2) + Sz
(3)

)]
, (E3)

ε∗
xy = 4g1 + 2g2 − 3g3 + 6g4

3c44

[
hx

(
Sz

(0) − Sz
(1) + Sz

(2) − Sz
(3)

) + hy
(
Sz

(0) + Sz
(1) − Sz

(2) − Sz
(3)

)]
− 8g1 + 4g2 + 3g3 − 6g4

3c44

[
hz

(
Sz

(0) + Sz
(1) + Sz

(2) + Sz
(3)

)]
− 2k1 + k2

c44

[
1√
3

(
Sx

(0) − Sx
(1) − Sx

(2) + Sx
(3)

) + (
Sy

(0) − Sy
(1) − Sy

(2) + Sy
(3)

)]
, (E4)

ε∗
xz = 4g1 + 2g2 − 3g3 + 6g4

3c44

[
hx

(
Sz

(0) − Sz
(1) − Sz

(2) + Sz
(3)

) + hz
(
Sz

(0) + Sz
(1) − Sz

(2) − Sz
(3)

)]
− 8g1 + 4g2 + 3g3 − 6g4

3c44

[
hy

(
Sz

(0) + Sz
(1) + Sz

(2) + Sz
(3)

)]
− 2k1 + k2

c44

[
1√
3

(
Sx

(0) − Sx
(1) + Sx

(2) − Sx
(3)

) + ( − Sy
(0) + Sy

(1) − Sy
(2) + Sy

(3)

)]
, (E5)

ε∗
yz = 4g1 + 2g2 − 3g3 + 6g4

3c44

[
hy

(
Sz

(0) − Sz
(1) − Sz

(2) + Sz
(3)

) + hz
(
Sz

(0) − Sz
(1) + Sz

(2) − Sz
(3)

)]
− 8g1 + 4g2 + 3g3 − 6g4

3c44

[
hx

(
Sz

(0) + Sz
(1) + Sz

(2) + Sz
(3)

)] + 4k1 + 2k2

c44

[
1√
3

(
Sx

(0) + Sx
(1) − Sx

(2) − Sx
(3)

)]
. (E6)

In the above Eqs. (E1)–(E6), we use the superscript to
denote the extremized elastic strain. We note that the magnetic
field has also been rewritten in terms of the global basis as
described in Appendix C.

APPENDIX F: NUMERICAL VALUES OF CHOSEN
COUPLING CONSTANTS CHOSEN

We take Jzz = 1 in this study. For the (multipolar) spin
ice (M)SI magnetostriction behaviors, we choose J±/Jzz =
0.02 and J±±/Jzz = 0.05. For the cAFQL magnetostric-
tion, we choose J±/Jzz = −0.5 and J±±/Jzz = −0.5. For
the cAFQL magnetostriction, we choose J±/Jzz = −0.5 and
J±±/Jzz = 0.5. For the FQL+ magnetostriction, we choose
J±/Jzz = 0.72 and J±±/Jzz = 0.5. For the FQL− magne-
tostriction, we choose J±/Jzz = 0.72 and J±±/Jzz = −0.5.
We take g1 = g2 = − 9

4
√

3
× 10−7, g3 = 14

√
3 × 10−7, g4 =

4
√

3 × 10−7, k1 = −4.5
√

3 × 10−7, k2 = −2.6
√

3 × 10−7,
and cB = c44 = c11 − c22 = 1. Finally, we take δ1 = 0.00075
and δ2 = −0.000088 to emphasize the perturbative nature
of the quadratic-in-h magnetic field coupling. The numer-
ical values for the pseudospin-lattice couplings are taken
with comparison to an experimental study of Pr-based heavy
fermion compound, PrIr2Zn20 [16]. PrIr2Zn20 shares similar-
ities with Pr2Zr2O7 in that both their interesting phenomena
arise from Pr ions’ f 2 electrons. Taking the above coupling
constants yields magnetostriction behaviors that are of the
same scale as the reported study. Indeed, the physical scale of
(�L/L) ∼ 10−6 for the relative length change is also observed
in magnetostriction studies in other f electron heavy fermion
compounds [63,64], as well as in pressurized Kitaev materi-
als [65]. The actual value (or ratio) of the coupling constants
can be determined by employing the proposed length change
behaviors in conjunction with experimental measurements. As
an example, by subtracting off the leading linear-in-h scaling

behavior in the experimental length change measurements for
the [111] field and (1,1,1) direction allows the determination
of (2k1 + k2) in Eq. (7) and subsequently (k1 − k2) from the
(1,1,0) length change in Eq. (8), as we have numerically
computed the pseudospin configurations. To subsequently ex-
tract out the remaining g1,2,3,4 couplings, it requires additional
length change measurements. For example, one may employ
the gradients of the aforementioned two [111] field length
changes along with the gradients of the two [110] field length
changes of Fig. 9 to obtain the lattice-dipole couplings g1,2,3,4.

APPENDIX G: CLASSICAL SOLUTION TO
PSEUDOSPIN-1/2 MODEL

The classical ground state of Eq. (1) is that of a 4-sublattice
q = 0 ordering, as Eq. (1) can be written as the decoupled
sum over an individual (up or down) tetrahedron. Thus, any
classical configuration that minimizes the energy of a single
(up or down) tetrahedron automatically minimizes the total
Hamiltonian. The subsequent magnetic orderings over the
entire pyrochlore lattice is that of magnetic orderings repeated
over each tetrahedron. Since the non-Kramers ions involve
quadrupolar moments, these orderings are in fact multipolar
orderings (rather than magnetic orderings as in the Kramers
case).

APPENDIX H: EXACT DIAGONALIZATION (ED)

The ED ground state is obtained by employing the quantum
lattice model solver package H� [66]. A central step in this
package is to represent the pseudospin operators in terms of
fermionic operators, namely

Sz
i = 1

2 (c†
i,↑ci,↑ − c†

i,↓ci,↓), S+
i = c†

i,↑ci,↓, S−
i = c†

i,↓ci,↑.

(H1)
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FIG. 4. The 16- and 32-site ED clusters. [(a), (c)] Schematic of the respective 16- and 32-site unit cells with the yellow (blue) planes
denoting the kagome (triangular) planes. [(b), (d)] Top view of the respective 16- and 32-site clusters from the [111] direction. The four
different colors denote sites on the four different triangular and kagome layers in panels (a) and (c), respectively. The periodic directions are
denoted by the axes.

Using this formulation in Eq. (1), eigenenergies, eigenstates,
one-body Green’s function, and two-body Green’s function
are obtained. The one-body Green’s function permits the
extraction of the expectation value of the pseudospin oper-
ator, i.e., 〈Sμ

i 〉. The two-body Green’s function allows the
pseudospin-pseudospin correlation function to be obtained,
i.e.. 〈Sμ

i Sν
j 〉. The convergence factor of the Lanczos algorithm

is determined by the condition of whether the relative error
between the ground-state energy at a given step and that of
the previous step is less than 10−9.

1. The 16- and 32-site ED cluster study

We present in Fig. 4 the 16- and 32-site ED clusters that
we employ in this study, which depict the precise locations of
the sublattices with respect to the boundary conditions. The
16-site cluster is composed of two Bravais lattice points in the
global x̂ and ŷ direction and a single lattice point in the global
ẑ. The 32-site cluster is formed by having two Bravais lattice
points in each of the x̂, ŷ, and ẑ directions.

The computationally less intensive 16-site ED study pro-
vides the h = 0 phase diagram in Fig. 5. The location of the
ED phase boundaries in the 16-site study guides us in choos-
ing the J± = 0.02Jzz and J±± = 0.05Jzz parameter choice to
investigate the 32-site quantum spin ice under a magnetic
field. As seen, we confirm the existence of three distinct
phases separated by phase boundaries. The phase boundaries
are characterized as a singular point in the second deriva-

tive of ground-state energy with respect to the two coupling
constants, i.e., singularity in ∂2E/∂J2

± and ∂2E/∂J2
±±. We

compare the qualitative similarity of Fig. 5 to the classical
phase diagram of Fig. 1 as well as the gMFT phase dia-
gram in Ref. [31]. We note that the precise location of the
phase boundaries is different when comparing ED to gMFT

FIG. 5. The 16-site ED phase diagram of Eq. (1) for the non-
Kramers model. The phase boundaries are denoted by the location of
∂2E
∂J2±

and ∂2E
∂J2±±

becoming singular.
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FIG. 6. The intensity distribution of S22(q) for each phases. The parameter sets are chosen as (J±, J±±) = (0.03, 0.1) for phase I,
(J±, J±±) = (0.4, 0.1) for phase II, and (J±, J±±) = (0.1, 0.8) for phase III, respectively.

(or even classical) studies. Indeed, the ED phase boundary
location along the J±± = 0 axis is at J± = 0.056Jzz. This
phase boundary is much closer (compared to gMFT) to the
quantum Monte Carlo phase boundary of the XXZ model of
J± = 0.052Jzz [67]. This comparison provides strong support
to the validity of our ED findings. Moreover, the 32-site
ED favorably compares to other numerical techniques such
as numerical linked cluster methods in pyrochlore material
Yb2Ti2O7 [68].

To understand the nature of these phases, we examine the
static-spin structure factor. The intensity of the structure factor
is defined as

Sαβ (q) =
∑

μ

Sαβ
μ (q) = 1

Ns

∑
μ

∑
i∈α, j∈β

e−ik·(Ri−R j )
〈
Sμ

i Sμ
j

〉
,

(H2)

where μ sums over the three components {x, y, z} of the
pseudospin, α and β are sublattice indices {0, 1, 2, 3}, Ns is
the total number of sites, and i, j are site locations of sublat-
tice α, β, respectively; in the Ns = 16 (Ns = 32) site cluster,
there are four (eight) such i, j locations each. The wave num-
ber k is represented by using primitive reciprocal vectors bi as
k = ∑3

i=1 qibi. From this notation, we can easily notice that
the first Brillouin zone is for −1/2 < qi < 1/2. We explicitly
note that for the 16-site cluster, there are two momenta points
in the kx and ky direction, namely that of 0 and π , while the
kz direction only has one momentum point of 0, since there is
only one Bravais lattice point in the z direction.

We present in Fig. 6 the static structure factor S22(q) for
each of the three regions of Fig. 5, which provides information
on the long-range correlation effects in the cluster. In partic-
ular, the location of the peak structure provides information
as to the nature of the multipolar order realized in the system.
For region I, we find intensity peaks at q = (0, 0) and q =
(π, π ), which is a reflection of a lack of an ordering wave
vector within the 16-site cluster. This lack of order seems
qualitatively consistent with a QSL phase. On the other hand,
phases II and III have a single peak located at q = (0, 0),
which validates a q = 0 ordered state.

To distinguish phases II and III is, however, challenging as
the expectation value of the local pseudospin moment in the

absence of a symmetry-breaking magnetic field is always zero
in ED. By studying the pseudospin-pseudospin correlation
function, we can fortunately demonstrate the consistency of
these phases with the classical ordered FQL and cAFQL

phases. For instance, in phase II, the nearest-neighbor corre-
lation is 〈Sx(y)

α Sx(y)
β 〉 > 0 and 〈Sz

αSz
β〉 > 0+. Here 0+ indicates

a positive number that is an order of magnetitude smaller
than 〈Sx(y)

α Sx(y)
β 〉. This indicates a ferrolike correlation in the

xy local moments (that is dominant over any z-component
correlation), which is consistent with the FQL. Similarly, for
phase III, the nearest-neighbor correlation is consistent with
the cAFQL phase. Thus, we can reasonably claim that the
16-site ED phase diagram matches well with the expected
phase diagram from gMFT. We subsequently use the 16-site
ED phase diagram as a guide for the choice of parameters to
use for the 32-site ED investigation of quantum spin ice. In
particular, in anticipation that the phase boundaries will likely
shift, we choose J± and J±± to be deep in phase I (the likely
quantum spin ice phase) and away from the phase boundaries.

2. Extracting ED pseudospin expectation values

An inherent challenge in ED studies is in extracting the
pseudospin expectation values, as spontaneous symmetry
breaking is only captured in the thermodynamic limit [69].
As such, in finite-sized clusters (in zero magnetic field), the
pseudospin expectation values are always zero. This issue
can be avoided in a magnetic field, as the coupling of the
field to the dipole moment explicitly breaks the symmetry,
thus rendering a finite dipole expectation value. However, in
the absence of a field, we sketch the general strategy that
can be used, where we employ the two-point pseudospin
correlators and the intensity of the structure factor to divine
the pseudospin expectation values. In particular, we use the
numerically produced 〈Sz

i 〉 values as a benchmark to extract
out the pseudospin expectation values of the x and y compo-
nents. Even though the quadrupolar contribution to the length
change only involves the X and Y pseudospin components
on sublattices 1, 2, and 3 (as will become clear below), it is
helpful to have information of the ordering on sublattice 0.

We first recall that the pseudospin on sublattice 0 is fully
polarized under a [111] field to yield a trivial ordering on the
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triangular layers of Fig. 4. As such, we (reasonably) assume
that we can decouple the two-point correlator for sublattice
0 sites (i, j) into the product of the expectation values on
each site, i.e., 〈Sμ

i Sν
j 〉 � 〈Sμ

i 〉〈Sν
j 〉 for i 	= j ∈ sublattice 0.

Here μ = {x, y, z} are components of the pseduospin in the
local axes. This decoupling is true for the z components (as is
trivially polarized), but we assume that we can also do so for
the x and y components.

Using the definition of the intensity of the structure factor
in Eq. (H2), we now extract the expectation value of the
μ component of the pseudospin on sublattice 0 [hereafter
represented as “(0)”],

S00
μ (q = 0) = 1

Ns

∑
i, j∈(0)

〈
Sμ

i Sμ
j

〉

� 1

Ns

[
Ns

4

〈(
Sμ

(0)

)2〉 + Ns

4

(
Ns

4
− 1

)〈
Sμ

(0)

〉2]
. (H3)

Here we used the fact that 〈Sμ
i 〉 = 〈Sμ

(0)〉 for i ∈ (sublattce 0)
due to the expected q = 0 ordering. In Eq. (H3), the left-hand
side and the first term in the right-hand side are numerically
produced in the package, and so we solve for the second term.
We thus have an estimate of the pseudospin expectation value
on sublattice 0; as a benchmark, the z-component expectation
value from this method agrees to the numerically produced
value to within 10−5.

Confident in the above decoupling scheme, we now pro-
ceed to find the pseudospin expectation values on the other
sublattices. For sublattices 1, 2, and 3, we consider two
tetrahedra that are as far apart as possible in the (for example)
32-site cluster: tetrahedron A composed of site (12,0,1,2)
and tetrahedron B composed of (31,25,26,27) in Fig. 4; here
we label the sites on each tetrahedron in ascending order
of the sublattice number, i.e., {12, 31} ∈ (0), {0, 25} ∈ (1),
{1, 26} ∈ (2), {2, 27} ∈ (3). Since these tetrahedra are well
separated, we can consider the pseudospins on tetrahedron A
to be almost uncorrelated to the pseudospins on tetrahedron B,
and thus assume they are separable just as we did above. With
this assumption, we then compute the expectation values for
sublattices 1, 2, and 3 using the following:〈

Sμ
31Sμ

0

〉
〈
Sμ

(0)

〉 �
〈
Sμ

31

〉〈
Sμ

0

〉
〈
Sμ

(0)

〉 =
〈
Sμ

(0)

〉〈
Sμ

(1)

〉
〈
Sμ

(0)

〉 = 〈
Sμ

(1)

〉
,

〈
Sμ

31Sμ
1

〉
〈
Sμ

(0)

〉 �
〈
Sμ

31

〉〈
Sμ

1

〉
〈
Sμ

(0)

〉 =
〈
Sμ

(0)

〉〈
Sμ

(2)

〉
〈
Sμ

(0)

〉 = 〈
Sμ

(2)

〉
,

〈
Sμ

31Sμ
2

〉
〈
Sμ

(0)

〉 �
〈
Sμ

31

〉〈
Sμ

2

〉
〈
Sμ

(0)

〉 =
〈
Sμ

(0)

〉〈
Sμ

(3)

〉
〈
Sμ

(0)

〉 = 〈
Sμ

(3)

〉
. (H4)

Again as a benchmark, the pseudospin z-expectation values
on the sublattices 1, 2, and 3 computed from this method
agree very well with the numerically produced value to within
10−5, thus providing a validation for the assumption. The
above correlator strategy is beneficial when there is no explicit
symmetry-breaking field. Indeed, this is the case for the XY
components when the perturbatively weak quadratic-in-h cou-
pling term is disregarded. Comparing the correlator method’s
result for the XY expectation value with and without the

FIG. 7. XY magnetostriction behavior from directly obtained
XY expectation value. (a) Direct method, (b) correlator method.
Both methods capture the qualitative sharp peak associated with the
quadrupolar contribution.

quadratic-in-h coupling term, we find that both results are
the same to within ≈ 10−4. For completeness, the explicit
expectation value (finite, in the presence of the quadratic-in-h
coupling term) gives the same qualitative peak feature (in
the quadrupolar contribution to the length change) as the
correlator method, except the quantitative value is reduced
by a factor. This can be seen in Fig. 7, where we plot
both the directly obtained expectation value (top panel) and
for comparison correlator-method obtained (bottom panel)
for the XY contribution to the magnetostriction under a
[111] magnetic field, using the same coupling parameters in
Appendix F.

APPENDIX I: NON-KRAMERS SPIN-ICE LOCAL
PSEUDOSPIN CONFIGURATION IN [111]

MAGNETIC FIELD

We present in Fig. 8 the behavior of the local pseudospin
configuration on each sublattice under the [111] magnetic
field. The shaded regions in Fig. 8 match up with the shaded
regions in Fig. 2 of the main text: namely, the orange region
indicates the U(1) QSL (quantum spin ice), yellow region
indicates kagome ice phase, and indigo-blue region indicates
polarized phase. The solid lines (unfilled squares) indicate the
classically (correlator ED method) obtained local pseudospin
configurations. In the kagome ice phase, the large degeneracy
of the classical solution is clearly seen, while the ED study
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FIG. 8. Local pseudospin configuration for non-Kramers SI in
a [111] magnetic field. The degenerate kagome spin ice phase is
denoted by the yellow shaded region, stable quantum spin ice is
indicated by the orange shaded region, and the fully polarized state
is depicted by the indigo-blue shaded region. Solid lines (unfilled
squares) indicate classically (ED) obtained local pseudospin config-
urations on each sublattice.

(as discussed in the main text) yields an averaged (over all
degenerate states) local pseudospin configuration.

APPENDIX J: CLASSICAL NON-KRAMERS SPIN ICE
IN [110] MAGNETIC FIELD

We present in Fig. 9 the classical magnetostriction behavior
along the (1,1,1) and (1,1,0) directions for a [110] magnetic
field. As seen, there is a lack of any clear or distinct features.
The reason lies with the fact that both the magnetic field
and the ice rules can be simultaneously satisfied for this

field direction. For the [110] field, the magnetic field couples
solely to sublattice 0, 3 and fails to do so to sublattices 1, 2;
i.e., only ĥ · (x̂, ŷ, ẑ)0,3 	= 0, while ĥ · (x̂, ŷ, ẑ)1,2 = 0. As such,
pseudospins on sublattices 0 and 3 respectively get aligned
parallel (+ẑ0) and antiparallel (−ẑ3) to the field, while the
other sublattices conspire together to satisfy the ice rules, i.e.,
partial degeneracy of the ice rules remains, with sublattices
1, 2, taking Sz

(1) = { 1
2 ,− 1

2 } and Sz
(2) = {− 1

2 , 1
2 }, respectively.

This situation is valid for any finite field values. Thus, there is
no transition to any fully polarized state in the large field limit
and no observable transition (unlike the [111] direction).

APPENDIX K: CLASSICAL PHASE DIAGRAM
OF KRAMERS IONS

The classical Kramers phase diagram of Fig. 10 provides
a variety of possible phases: a blended phase composed of
spin ice (SI) and splayed ferromagnet (SFM) of the same
T1g symmetry, a coplanar antiferromagnetic Palmer-Chalker
(PC) phase of T2g symmetry, and a 1D manifold of states with
Eg symmetry. An obvious distinction between the Kramers
and non-Kramers phase diagram is that SI and SFM phases
blend together for Kramers ions, while the corresponding non-
Kramers phases are separated by a phase boundary for non-
Kramers ions. This is a consequence of Jz± 	= 0, which allows
the two aforementioned order parameters to mix. One can
easily notice this by expressing Eq. (1) in terms of classical
order parameters (orderings) on a single tetrahedron,

Htet = 1
2

[
3Jzzm

2
A2

− 6J±m2
E + (2J± − 4J±±)m2

T2

− Jzzm2
T1,A

+ (2J± + 4J±±)m2
T1,B

− 8Jz±mT1,A · mT1,B

]
,

(K1)

where we use the definition of the order parameters as pre-
sented in Appendix N, and we drop the gerade subscript
for the order parameters for brevity. From the last term in
Eq. (K1), the two T1 symmetry magnetic orderings mix with
each other when Jz± 	= 0. Consequently, for Kramers ions,
there exists a common region in the phase diagram with
coexisting SI and SFM ordering. Depending on the location

FIG. 9. Length change, �L
L , under applied [110] magnetic field, h for non-Kramers MSI phase J± = 0.02Jzz, J±± = 0.05Jzz. (a) Along the

(1,1,1) direction; (b) along the (1,1,0) direction. Due to the lack of competition between the ice rules and the magnetic field couplings, the
length change has a monotonic behavior.
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FIG. 10. Classical phase diagram of Eq. (1) for Kramers (Jz± =
0.25Jzz). The depicted phases are spin ice (SI), splayed ferromagnet
(SFM), Palmer-Chalker (PC), and 1D manifold of states. The black
dashed line is when the SI and SFM phases mix equally and separate
a SI-dominating phase (order parameter dominated by �mT 1,A) and a
SFM-dominating phase (order parameter dominated by �mT 1,B).

in this common region, the state is more SI-like or more
SFM-like, which we label as SI dominant and SFM dominant,
respectively.

APPENDIX L: MAGNETOSTRICTION EXPRESSIONS
OF KRAMERS PYROCHLORE MATERIALS

We now turn to examining the magnetostriction behavior of
classically ordered Kramers phases. Since all the pseudospin
components are magnetic dipole moments, they all couple to
an external magnetic field at linear order,

Hmag,K = −h ·
∑

t

3∑
α=0

[
ẑαSz

t,(α) + gxy

gzz

(
x̂αSx

t,(α) + ŷαSy
t,(α)

)]
,

(L1)

where we include the nonvanishing g-tensor components gxy,
gzz. As a typical example, we take the estimated g-tensor
values of Yb2Ti2O7 [36]: (gxy, gzz ) = (4.18, 1.77). Due to
the magnetic dipole nature of the XY moments, we have in
addition to Eq. (4),

FXY,K = −n0
[
Sx

αhx
αεα

xx + Sy
αhy

αεα
yy + (

Sx
αhy

α + Sy
αhx

α

)
εα

xy

]
− n1

[
Sx

αhx
αεα

yy + Sy
αhy

αεα
xx − (

Sx
αhy

α + Sy
αhx

α

)
εα

xy

]
− n2

[(
Sy

αhy
α − Sx

αhx
α

)
εα

xz + (
Sx

αhy
α + Sy

αhx
α

)
εα

yz

]
− n3

[(
Sx

αhx
α + Sy

αhy
α

)
εα

zz

] − n5
[
Sx

αεα
xz + Sy

αεα
yz

]
hz

α

− n4
[
Sx

α

(
εα

xx − εα
yy

) − 2Sy
αεα

xy

]
hz

α, (L2)

FIG. 11. Length change, �L
L , along the (1,1,1) direction under applied [111] magnetic field, h, for the various classically magnetically

ordered phases of Kramers ions (Jz± = 0.25Jzz). The dashed vertical lines denote regions of discontinuity in the length change, intimately
linked to the discontinuity in the pseudospin expectation values. The green, blue, and red curves denote the length change arising from the XY
pseudospin (quadrupolar), Z pseudospin (dipole), and combined contributions, respectively.
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where we again need the assistance of an external magnetic field in order to couple to the lattice strains, and we implicitly
sum over α = {0, 1, 2, 3}. Employing the couplings in Eqs. (4) and (L2), the parallel length change to a [111] magnetic field
h = h√

3
(1, 1, 1) is(

�L

L

)[111]

(1,1,1),K

= − h

[
1√
3

(
2Sx

(1) − Sx
(2) − Sx

(3)

) +
(
Sy

(2) − Sy
(3)

)]
ñ + (g3 + g4)

3
√

3cB

h

[
3Sz

(0) − S(1)
z − Sz

(2) − Sz
(3)

]

− 2
√

3

27c44
h

[
(3g3 − 6g4)

(
9Sz

(0) + Sz
(1) + Sz

(2) + Sz
(3)

) + (32g1 + 16g2)
(
Sz

(1) + Sz
(2) + Sz

(3)

)]

= − 2ñ√
3

h
[
mx

T1B
+ my

T1B
+ mz

T1B

]
− h

[
D0mA2g + (D1 + D2)

(
mx

T1A
+ my

T1A
+ mz

T1A

)]
(L3)

Because the Z couplings have the same form as the
non-Kramers case, the length change arising from the
Z dipole moment is identical. The XY contribution
has the same form (albeit accompanied by the mag-
netic field strength, h), with a complicated combina-
tion of elastic-pseudospin coupling constants, where ñ =√

3 (2cB (5
√

2n0−3
√

2n1−4n2−2
√

2n3+4n4+
√

2n5 )+√
2c44(n0+n1+n3 ))

27c44cB
is a

collection of constants. We also collect the constants D0 =
4
√

3(−8g1+4g2−3g3+6g4 )
9c44

, D1 = 8
√

3(4g1+2g2−3g3+6g4 )
27c44

, and D2 =
2(g3+g4 )

3
√

3cB
. We take ñ = −10−7 for the magnetostriction behav-

iors in Fig. 11 and use the same choice of the other coupling
constants as the non-Kramers case (Appendix F).

APPENDIX M: LENGTH CHANGE BEHAVIOURS OF
KRAMERS MAGNETICALLY ORDERED PHASES

We present in Fig. 11 the magnetostriction behaviours
of the magnetically ordered ground states. Because of the
aforementioned mixing of the SI and SFM phases, we present
the behavior for choice of J±, J±±, Jz± which yields dominant
SI (SFM) behavior over SFM (SI). Just as in Fig. 3, we denote
jump discontinuous behaviours in the magnetic ordering by
vertical dashed lines.

In all the Kramers ion behaviors, at h = 0 the total length
change vanishes as is apparent from Eq. (L3). Moreover, all
phases possess a monotonically increasing XY contribution to
the length change. For the SI-dominant phase in Fig. 11(a),
there exist two points of discontinuity. The first (at small
field) arises due to Sz

(0) becoming fully polarized in the −ẑ0

direction, and the second (at larger field) due to Sz
(0) becoming

polarized in the +ẑ0 direction. This discontinuity also appears
(albeit less prominently) in the XY behavior. The second
discontinuity can be loosely associated to the discontinuity

in the NK case, in that Sz
(0) becomes fully polarized in both

cases; however, since the magnetic field coupling involves
Sx,y

(0,1,2,3), as well as the presence of the Jz± term, it is not a
direct comparison. The SFM-dominant phase in Fig. 11(b)
possesses a single discontinuity, which (just as the second
discontinuity point of the SI-dominant phase) is associated
with Sz

(0) becoming fully polarized. The broad maximum in
the Z contribution arises due to a gradual change in the sign
of Sz

(0) from Sz
(0) < 0 in the SFM-like phase to the fully polar-

ized Sz
(0) = 1/2. The PC phase in Fig. 11(c) also possesses

two discontinuous points: The first is associated with Sz
(0)

becoming fully polarized, and the second is where Sy
(1) → 0.

From the numerical minimization, the second discontinuity
appears to be continuous. Finally, the two 1D manifold states
in Figs. 11(d) and 11(e) have a single discontinuity again
associated with Sz

(0) becoming fully polarized.
As seen, there is a lack of clear difference between

the various Kramers magnetically ordered phases. In fact,
only the SI-dominant phase appears to be distinct, with the
dipole contribution flipping sign after the discontinuity. This
suggests that unlike the non-Kramers ions, magnetostriction
is less suited for Kramers ions.

APPENDIX N: IRREPS DECOMPOSITION OF NK AND K
MAGNETIC ORDERINGS

For completeness, we present the basis states of the various
magnetic orderings of the Kramers and non-Kramers ions in
Table II. Although the Kramers and non-Kramers ions have
the same types of orderings, due to the difference in the
symmetry transformations of JxJz and Jx the SFM (cAFQL)
and PC (cAFQL) phases have different irrep labels.
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