Diagnosis of crack damage on structures based on image processing techniques and R-CNN using unmanned aerial vehicle (UAV)

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 279
  • Download : 0
In this paper, we developed techniques to identify and quantify the damage (crack) to bridges based on images obtained by the unmanned aerial vehicle (UAV). The scope of the research includes image acquisition using UAV, the classification system of crack based on Deep-learning and algorithms of detection and quantification using improved Image Processing Techniques (IPTs). A conventional crack detection method using only IPTs can be applied marginally according to the image acquisition environment (lights, shadows, etc.), so we proposed the techniques based on Deep-learning to find the crack part in the region of interest (ROI) from the other types of damage or non-crack. After classifying the crack part in the ROI, improved IPTs are applied to the detected regions to quantify cracks at 300 micrometers. Performances of the technique were evaluated through preliminary test and field test. The non-contact bridge damage detection technology using UAV can be applied to the actual bridge inspection field It is expected to have more performance than existing bridge inspection methods.
Publisher
SPIE
Issue Date
2018-03-06
Language
English
Citation

SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 2018

DOI
10.1117/12.2296691
URI
http://hdl.handle.net/10203/247537
Appears in Collection
CE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0