Complementary logic operation based on electric-field controlled spin-orbit torques

Cited 94 time in webofscience Cited 0 time in scopus
  • Hit : 548
  • Download : 0
Spintronic devices offer low power consumption, built-in memory, high scalability and reconfigurability, and could therefore provide an alternative to traditional semiconductor-based electronic devices. However, for spintronic devices to be useful in computing, complementary logic operation using spintronic logic gates is likely to be required. Here we report a complementary spin logic device using electric-field controlled spin-orbit torque switching in a heavy metal/ferromagnet/oxide structure. We show that the critical current for spin-orbit-torque-induced switching of perpendicular magnetization can be efficiently modulated by an electric field via the voltage-controlled magnetic anisotropy effect. Moreover, the polarity of the voltage-controlled magnetic anisotropy can be tuned through modification of the oxidation state at the ferromagnet/oxide interface. This allows us to create both n-type and p-type spin logic devices and demonstrate complementary logic operation.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2018-07
Language
English
Article Type
Article
Citation

NATURE ELECTRONICS, v.1, no.7, pp.398 - 403

ISSN
2520-1131
DOI
10.1038/s41928-018-0099-8
URI
http://hdl.handle.net/10203/245931
Appears in Collection
PH-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 94 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0