Visible-light-driven dynamic cancer therapy and imaging using graphitic carbon nitride nanoparticles

Cited 20 time in webofscience Cited 0 time in scopus
  • Hit : 427
  • Download : 0
Organic graphitic carbon nitride nanoparticles (NP-g-CN), less than 30 nm in size, were synthesized and evaluated for photodynamic therapy (PDT) and cell imaging applications. NP-g-CN particles were prepared through an intercalation process using a rod-like melamine-cyanuric acid adduct (MCA) as the molecular precursor and a eutectic mixture of LiCI-KCI (45:55 wt%) as the reaction medium for polycondensation. The nano-dimensional NP-g-CN penetrated the malignant tumor cells with minimal hindrance and effectively generated reactive oxygen species (ROS) under visible light irradiation, which could ablate cancer cells. When excited by visible light irradiation (lambda > 420 nm), NP-g-CN introduced to HeLa and cos-7 cells generated a significant amount of ROS and killed the cancerous cells selectively. The cytotoxicity of NP-g-CN was manipulated by altering the light irradiation and the BP-g-CN caused more damage to the cancer cells than normal cells at low concentrations. As a potential non-toxic organic nanomaterial, the synthesized NP-g-CN are biocompatible with less cytotoxicity than toxic inorganic materials. The combined effects of the high efficacy of ROS generation under visible light irradiation, low toxicity, and bio-compatibility highlight the potential of NP-g-CN for PDT and imaging without further modification.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2018-09
Language
English
Article Type
Article
Keywords

PHOTODYNAMIC THERAPY; CONVERSION; NANOPLATFORM; NANOSHEETS; PORPHYRIN; MELAMINE

Citation

MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, v.90, pp.531 - 538

ISSN
0928-4931
DOI
10.1016/j.msec.2018.04.035
URI
http://hdl.handle.net/10203/244648
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0