Facile Nano-templated CO2 Conversion into Highly Interconnected Hierarchical Porous Carbon for High-performance Supercapacitor Electrodes

Cited 69 time in webofscience Cited 0 time in scopus
  • Hit : 413
  • Download : 0
Hierarchical porous carbon materials have been derived through CO2 conversion by using NaBH4 as a reducing agent and CaCO3 as a nano-template. The CaCO3-templated porous carbons (CPCs) feature an interconnected three-dimensional structure with hierarchical pores favorable for electrochemical energy storage. Notably, CPC1_700 prepared with an identical mass of CaCO3 and NaBH4 at 700 degrees C shows a very high capacitance of 270 F/g at 1 A/g and retains its capacitance up to 170 F/g at 20 A/g in 6 M KOH aqueous electrolyte. Moreover, it presents an outstanding normalized capacitance of 21.4 mu F/cm(2) even in the absence of pseudocapacitive behavior, and a fast frequency response with a low relaxation time constant of 0.27 s. Concerning the cycle stability, more than 90% of the initial capacitance is maintained after 10000 consecutive cycles at high current densities (20 A/g and 30 A/g). The major fundamental insights underlying this performance are closely related to the interconnected hierarchical pore architecture generated by the concurrent template and CO2 activation effect, which leads to increased surface area, fast ionic transport, and efficient ionic storage. The proposed route of CO2-to-carbon with the template affords a facile, efficient, and sustainable strategy to synthesize hierarchical porous carbon for high-performance supercapacitors.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2018-01
Language
English
Article Type
Article
Citation

CARBON, v.126, pp.215 - 224

ISSN
0008-6223
DOI
10.1016/j.carbon.2017.10.020
URI
http://hdl.handle.net/10203/228502
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 69 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0