A Pseudo-Bayesian algorithm for Robust PCA

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 224
  • Download : 0
Commonly used in many applications, robust PCA represents an algorithmic attempt to reduce the sensitivity of classical PCA to outliers. The basic idea is to learn a decomposition of some data matrix of interest into low rank and sparse components, the latter representing unwanted outliers. Although the resulting problem is typically NP-hard, convex relaxations provide a computationally-expedient alternative with theoretical support. However, in practical regimes performance guarantees break down and a variety of non-convex alternatives, including Bayesian-inspired models, have been proposed to boost estimation quality. Unfortunately though, without additional a priori knowledge none of these methods can significantly expand the critical operational range such that exact principal subspace recovery is possible. Into this mix we propose a novel pseudo-Bayesian algorithm that explicitly compensates for design weaknesses in many existing non-convex approaches leading to state-of-the-art performance with a sound analytical foundation.
Publisher
Neural Information Processing Systems Foundation
Issue Date
2016-12
Language
English
Citation

30th Annual Conference on Neural Information Processing Systems, NIPS 2016, pp.1398 - 1406

URI
http://hdl.handle.net/10203/227754
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0