Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis

Cited 24 time in webofscience Cited 0 time in scopus
  • Hit : 512
  • Download : 978
The intracellular metabolic fluxes can be calculated by metabolic flux analysis, which uses a stoichiometric model for the intracellular reactions along with mass balances around the intracellular metabolites. In this study, metabolic flux analyses were carried out to estimate flux distributions for the maximum in silico yields of various metabolites in Escherichia coli. The maximum in silico yields of acetic acid and lactic acid were identical to their theoretical yields. On the other hand, the in silico yields of succinic acid and ethanol were only 83% and 6.5% of their theoretical yields, respectively. The lower in silico yield of succinic acid was found to be due to the insufficient reducing power, but this lower yield could be increased to its theoretical yield by supplying more reducing power. The maximum theoretical yield of ethanol could be achieved, when a reaction catalyzed by pyruvate decarboxylase was added in the metabolic network. Furthermore, optimal metabolic pathways for the production of various metabolites could be proposed, based on the results of metabolic flux analyses. In the case of succinic acid production, it was found that the pyruvate carboxylation pathway should be used for its optimal production in E. coli rather than the phosphoenolpyruvate carboxylation pathway.
Publisher
KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY
Issue Date
2003-08
Language
English
Article Type
Article
Citation

JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, v.13, pp.571 - 577

ISSN
1017-7825
URI
http://hdl.handle.net/10203/22647
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0