Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform

Cited 22 time in webofscience Cited 21 time in scopus
  • Hit : 386
  • Download : 0
Developing a well-defined nanostructure that can provide strong, reproducible, and stable SERS signals is quite important for the practical application of surface-enhanced Raman scattering (SERS) sensors. We report here a novel single nanowire (NW) on graphene (SNOG) structure as an efficient, reproducible, and stable SERS-active platform. Au NWs having a well-defined single-crystal geometry on a monolayer graphene-coated metal film can form a well-defined, continuous nanogap structure that provides extremely reproducible and stable SERS signals. The in-NW reproducibility was verified by 2-dimensional Raman mapping, and the NW-to-NW reproducibility was verified by the cumulative curves of 32 SERS spectra. The simulation also indicated that a highly regular, line-shaped hot spot formed between the Au NW and graphene. Furthermore, SNOG platforms showed improved photostability and long-term oxidation immunity. We anticipate that SNOG platforms will be appropriate for practical biological and chemical sensor applications that demand reproducible, stable, and strong signal production
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2016
Language
English
Article Type
Article
Citation

NANOSCALE, v.8, no.16, pp.8878 - 8886

ISSN
2040-3364
DOI
10.1039/c6nr00092d
URI
http://hdl.handle.net/10203/209379
Appears in Collection
EE-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 22 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0