Low Temperature Flex-on-Flex Assembly Using Polyvinylidene Fluoride Nanofiber Incorporated Sn58Bi Solder Anisotropic Conductive Films and Vertical Ultrasonic Bonding

Cited 2 time in webofscience Cited 16 time in scopus
  • Hit : 319
  • Download : 1114
In this study, solder ball incorporated polyvinylidenefluoride (PVDF) nanofiber was added into the ACF system to overcome short circuit issues of fine pitch flex-on-flex (FOF) assembly. Also, in order to improve the thermal mismatch of the flexible substrate which can lead to electrode misalignment during the bonding process, low melting temperature Sn58Bi solder balls were used with vertical ultrasonic (U/S) bonding method. When performing FOF assembly using PVDF nanofiber/Sn58Bi solder ACF and vertical ultrasonic bonding, PVDF nanofiber/Sn58Bi solder ACFs showed 34% higher solder capture rate on an electrode compared to conventional Ni ACFs and conventional Sn58Bi solder ACFs. Additionally, PVDF nanofiber/Sn58Bisolder ACFs showed 100% insulation between neighboring electrodes where conventional Ni ACFs and conventional Sn58Bi solder ACFs showed 75% and 87.5% insulation. Other electrical properties such as contact resistance and current handling capability as well as reliability test of PVDF nanofiber/Sn58Bi solder ACFs showed improved results compared to those of conventional Ni ACFs, which proves the formation of stable solder joint of PVDF nanofiber/Sn58Bi solder ACFs.
Publisher
HINDAWI PUBLISHING CORPORATION
Issue Date
2013
Language
English
Article Type
Article
Keywords

ADHESIVE; THERMOPLASTICS; MEMBRANES; ACFS

Citation

JOURNAL OF NANOMATERIALS

ISSN
1687-4110
DOI
10.1155/2013/534709
URI
http://hdl.handle.net/10203/192584
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
000329722500001.pdf(6.71 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0