Electronic structure and transport properties of hydrogenated graphene and graphene nanoribbons

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 394
  • Download : 560
The band gap opening is one of the important issues in applications of graphene and graphene nanoribbons (GNRs) to nanoscale electronic devices. As hydrogen strongly interacts with graphene and creates short-range disorder, the electronic structure is significantly modified by hydrogenation. Based on first-principles and tight-binding calculations, we investigate the electronic and transport properties of hydrogenated graphene and GNRs. In disordered graphene with low doses of H adsorbates, the low-energy states near the neutrality point are localized, and the degree of localization extends to high-energy states with increasing adsorbate density. To characterize the localization of eigenstates, we examine the inverse participation ratio and find that the localization is greatly enhanced for the defect levels, which are accumulated around the neutrality point. Our calculations support the previous result that even with a low dose of H adsorbates, graphene undergoes a metal-insulator transition. In GNRs, relaxations of the edge C atoms play a role in determining the edge structure and the hydrocarbon conformation at low and high H concentrations, respectively. In disordered nanoribbons, we find that the energy states near the neutrality point are localized and conductances through low-energy channels decay exponentially with sample size, similar to disordered graphene. For a given channel energy, the localization length tends to decrease as the adsorbate density increases. Moreover, the energy range of localization exceeds the intrinsic band gap.
Publisher
IOP PUBLISHING LTD
Issue Date
2010-12
Language
English
Article Type
Article
Keywords

AB-INITIO; SEMICONDUCTORS

Citation

NEW JOURNAL OF PHYSICS, v.12, pp.125005

ISSN
1367-2630
DOI
10.1088/1367-2630/12/12/125005
URI
http://hdl.handle.net/10203/99983
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
57115.pdf(2.71 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0