Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas

Cited 862 time in webofscience Cited 0 time in scopus
  • Hit : 1012
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorvon Maltzahn, Geoffreyko
dc.contributor.authorPark, Ji-Hoko
dc.contributor.authorAgrawal, Amitko
dc.contributor.authorBandaru, Nanda Kishorko
dc.contributor.authorDas, Sarit K.ko
dc.contributor.authorSailor, Michael J.ko
dc.contributor.authorBhatia, Sangeeta N.ko
dc.date.accessioned2013-03-11T07:46:57Z-
dc.date.available2013-03-11T07:46:57Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2009-05-
dc.identifier.citationCANCER RESEARCH, v.69, no.9, pp.3892 - 3900-
dc.identifier.issn0008-5472-
dc.identifier.urihttp://hdl.handle.net/10203/98690-
dc.description.abstractPlasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t(1/2), similar to 17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as similar to 2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation. [Cancer Res 2009;69(9):3892-900]-
dc.languageEnglish-
dc.publisherAMER ASSOC CANCER RESEARCH-
dc.subjectRAY COMPUTED-TOMOGRAPHY-
dc.subjectCONTRAST AGENT-
dc.subjectCOLLOIDAL GOLD-
dc.subjectQUANTUM DOTS-
dc.subjectNANOPARTICLES-
dc.subjectMICE-
dc.subjectSCATTERING-
dc.subjectNANOSHELLS-
dc.subjectABSORPTION-
dc.subjectCELLS-
dc.titleComputationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas-
dc.typeArticle-
dc.identifier.wosid000265761900023-
dc.identifier.scopusid2-s2.0-65949096862-
dc.type.rimsART-
dc.citation.volume69-
dc.citation.issue9-
dc.citation.beginningpage3892-
dc.citation.endingpage3900-
dc.citation.publicationnameCANCER RESEARCH-
dc.identifier.doi10.1158/0008-5472.CAN-08-4242-
dc.contributor.localauthorPark, Ji-Ho-
dc.contributor.nonIdAuthorvon Maltzahn, Geoffrey-
dc.contributor.nonIdAuthorAgrawal, Amit-
dc.contributor.nonIdAuthorBandaru, Nanda Kishor-
dc.contributor.nonIdAuthorDas, Sarit K.-
dc.contributor.nonIdAuthorSailor, Michael J.-
dc.contributor.nonIdAuthorBhatia, Sangeeta N.-
dc.type.journalArticleArticle-
dc.subject.keywordPlusRAY COMPUTED-TOMOGRAPHY-
dc.subject.keywordPlusCONTRAST AGENT-
dc.subject.keywordPlusCOLLOIDAL GOLD-
dc.subject.keywordPlusQUANTUM DOTS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusMICE-
dc.subject.keywordPlusSCATTERING-
dc.subject.keywordPlusNANOSHELLS-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusCELLS-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 862 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0