Utilization of Evaporation during the Crystallization Process: Self-Templation of Organic Parallelogrammatic Pipes

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 502
  • Download : 0
Analogues of 4-dodecyloxy-2-trifluoromethylbenzamide (12FH2) consisting of a hydrophobic alkyl chain, a trifluoromethylated aromatic ring, and a self-complementary hydrogen-bonding amido group were synthesized. and the structural effect of each component oil the formation of parallelogrammatic pipes was investigated. Differential scanning calorimetry and powder XRD analyses revealed that all-trans L and gauche-rich S polymorphic forms appeared for the analogues with more than eight carbon atoms in the alkyl chain, that is, the polymorphism originates in the conformation of the alkyl groups and hydrogen-bonding patterns of the benzamide group. Also, the trifluoromethyl substituent is crucial ill that it provides all appropriate molecular balance between the benzamide and alkyl groups. Scanning electron microscopy and powder XRD analyses of solids obtained by a drying-mediated assembly process revealed that production of the L polymorph by polymorphic transition from the S polymorph resulted in evolution of it three-dimensional structure when the alkyl group has more than 12 carbon atoms. Among the series of compounds, 12FH2 and 4-tetradecyloxy-2-trifluoromethylbenzamide (14FH2) formed parallelogrammatic pipes with micrometer dimensions. An atomic force microscopy Study of 12FH2 suggested that a single pipe may be composed of platelike crystallites of L polymorph. From a mercury-intrusion porosimetry study, it was determined that macroporous materials with average pore diameters of about 40 pm and porosity of about 80% were obtained. The previously proposed self-templation mechanism by polymorphic transition from S to L polymorph was further discussed in view of polymorphism and the crystallization rate. An appropriate molecular balance between the benzamide and alkyl groups is necessary to induce a proper polymorphic transition for the development of it three-dimensional hollow structure ill the evaporation process.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2009
Language
English
Article Type
Article
Citation

CHEMISTRY-A EUROPEAN JOURNAL, v.15, no.3, pp.612 - 622

ISSN
0947-6539
DOI
10.1002/chem.200801408
URI
http://hdl.handle.net/10203/98291
Appears in Collection
NT-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0