Study of strain softening behavior of Al-Al3Sc multilayers using microcompression testing

Cited 86 time in webofscience Cited 0 time in scopus
  • Hit : 554
  • Download : 0
Multilayer thin films with bilayer thicknesses in the nanometer range have been reported to have very high strengths. A previous study has shown that Al-Al3Sc multilayers, with bilayer thicknesses as small as 6 nm, have hardnesses as high as similar to 3 GPa as measured by sharp tip nanoindentation. In the present study, we have avoided some of the complications associated with sharp tip nanoindentation by directly measuring the yield strengths and strain hardening/softening properties of Al-Al3Sc multilayers using microcompression testing methods with a nanoindenter. The results show the expected trend of increasing yield strength with decreasing bilayer thickness, and compare favorably with estimates of the yield strengths based on sharp tip nanoindentation. During deformation, the Al-Al3Sc multilayer pillars with smaller bilayer spacings experience considerable strain softening, resulting in a "flat-top mushroom" shape after deformation. We have developed a numerical model to account for this inhomogeneous deformation behavior and to calculate stress-strain relationships during strain softening. A new transmission electron microscopy study of a deformed pillar shows that the softening is a result of destruction of the layered structure due to shearing and rotation. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2009-09
Language
English
Article Type
Article
Keywords

MECHANICAL-PROPERTIES; THIN-FILMS; DEFORMATION; HARDNESS; NANOINDENTATION; DISLOCATIONS; COMPOSITES; SYSTEMS; CU

Citation

ACTA MATERIALIA, v.57, no.15, pp.4473 - 4490

ISSN
1359-6454
DOI
10.1016/j.actamat.2009.06.007
URI
http://hdl.handle.net/10203/97615
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 86 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0