A study on the effect of gap width on residual stresses of laser-welded dissimilar joints

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 249
  • Download : 0
Laser-welded parts experience high local temperatures and severe heating-cooling cycles which lead to large local residual stresses. These stresses introduce unacceptable degradation of the mechanical properties of a weldment. Thermo-elasto plastic analyses with 3-D FE models, as well as experimental investigations were performed in order to predict temperature distribution and residual stresses of ND-YAG laser-welded joints with various gap widths between the dissimilar steel types of austenitic and precipitation-hardening stainless steel. The specimens have the shape of a pocket to optimize the weight of the structure, which consists of a thin skin (AISI304) and a thick skeleton (AISI630). The residual stresses at the surface of the weldments were measured using the instrumented indentation method. The residual stresses and melt-pool zone (MPZ) profiles show good agreement between the theoretical and experimental results. Considering the residual stresses, the allowable gap width range of the laser-welded joints for the pocket-shaped specimen was calculated. For a welding joint with gap widths, the longitudinal residual stress values at the yield stress level were observed. Melt-pool zone profiles described by the underfill and penetration depth also depend upon the gap size.
Publisher
Trans Tech Publications Ltd.
Issue Date
2006
Language
English
Citation

KEY ENGINEERING MATERIALS, v.326-328 I, no.0, pp.669 - 672

ISSN
1013-9826
URI
http://hdl.handle.net/10203/93113
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0