Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor

Cited 248 time in webofscience Cited 0 time in scopus
  • Hit : 385
  • Download : 0
The ammonium-oxidizing microbial community was investigated in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor that was operated for about 1 year with high anaerobic ammonium oxidation activity (up to 0.8 kg NH(4)(+)-N m(-3) day(-1)). A Planctomycetales-specific 16S rRNA gene library was constructed to analyse the diversity of the anaerobic ammonium-oxidizing bacteria (AnAOB). Most of the specifically amplified sequences (15/16) were similar to each other (> 99%) but were distantly related to all of the previously recognized sequences (< 94%), with the exception of an unclassified anammox-related clone, KSU-1 (98%). An ammonia monooxygenase (amoA) gene library was also analysed to investigate the diversity of 'aerobic' ammonium-oxidizing bacteria (AAOB) from the beta-Proteobacteria. Most of the amoA gene fragments (53/55) clustered in the Nitrosomonas europaea-Nitrosococcus mobilis group which has been reported to prevail under oxygen-limiting conditions. The quantitative results from real-time polymerase chain reaction (PCR) amplification showed that the dominant AnAOB comprised approximately 50% of the total bacterial 16S rRNA genes in the reactor, whereas the AAOB of beta-Proteobacteria represented only about 3%. A large fragment (4008 bp) of the rRNA gene cluster of the dominant AnAOB (AS-1) in this reactor sludge was sequenced and compared with sequences of other Planctomycetales including four anammox-related candidate genera. The partial sequence of hydrazine-oxidizing enzyme (hzo) of dominant AnAOB was also identified using new designed primers. Based on this analysis, we propose to tentatively name this new AnAOB Candidatus 'Jettenia asiatica'.
Publisher
BLACKWELL PUBLISHING
Issue Date
2008-11
Language
English
Article Type
Article
Keywords

ROTATING BIOLOGICAL CONTACTOR; WATER TREATMENT-PLANT; IN-SITU DETECTION; REAL-TIME PCR; WASTE-WATER; MOLECULAR EVIDENCE; NITROGEN-REMOVAL; SEQUENCE ALIGNMENT; FRESH-WATER; OXIDATION

Citation

ENVIRONMENTAL MICROBIOLOGY, v.10, pp.3130 - 3139

ISSN
1462-2912
DOI
10.1111/j.1462-2920.2008.01642.x
URI
http://hdl.handle.net/10203/92694
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 248 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0