Template-directed self-assembly and growth of insulin amyloid fibrils

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 252
  • Download : 0
The formation of amyloid aggregates in tissue is a pathological feature of many neurodegenerative diseases and type II diabetes. Amyloid deposition, the process of amyloid growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e., plaque), is known to be critical for amyloid formation in vivo. The requirement for a natural amyloid template, however, has made amyloid deposition study difficult and cumbersome. In the present work, we developed a novel, synthetic amyloid template by attaching amyloid seeds covalently onto an N-hydroxy-succinimide-activated surface, where insulin was chosen as a model amyloidogenic protein. According to ex situ atomic force microscopy observations,insulin monomers in solution were deposited onto the synthetic amyloid template to form fibrils, like hair growth. The fibril formation on the template occurred without lag time, and its rate was highly accelerated than in the solution. The fibrils were long, over 2 mu m, and much thinner than those in the solution, which was caused by limited nucleation sites on the template surface and lack of lateral twisting between fibrils. According to our investigations using thioflavin T-induced fluorescence, birefringent Congo red binding, and circular dichroism, fibrils grown on the template were identified to be amyloids that formed through a conformational rearrangement of insulin monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. The characteristics of amyloid deposition on the synthetic template were in agreement with previous studies performed with human amyloid plaques. It is demonstrated that the synthetic amyloid template can be used for the screening of inhibitors on amyloid deposition in vitro. (c) 2005 Wiley Periodicals, Inc.
Publisher
JOHN WILEY SONS INC
Issue Date
2005-06
Language
English
Article Type
Article
Keywords

COMPATIBLE SOLUTES; ORGANIC SOLUTES; IN-VITRO; BETA; DISEASE; PROTEIN; AGGREGATION; MODEL; MECHANISM; PEPTIDE

Citation

BIOTECHNOLOGY AND BIOENGINEERING, v.90, no.7, pp.848 - 855

ISSN
0006-3592
DOI
10.1002/bit.20486
URI
http://hdl.handle.net/10203/92531
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0