Prediction of pellet properties for an industrial bimodal high-density polyethylene process with Ziegler-Natta catalysts

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 370
  • Download : 0
To meet customers' various and complicated demands, polyolefin plants are forced to have frequent grade transitions that cause the production of a large amount of off-specification product. To reduce the amount of off-specification product and to maintain property uniformity within the specified grade, a virtual on-line analyzer (VOA) is necessary that calculates polymer properties from values of process variables that can be measured on-line such as temperature, pressure, gas composition, and so on. Most research has focused on the prediction of properties of the polymer in the reactor so far. However, in bimodal high-density polyethylene (HDPE) processes, there are significant differences between the properties of the polymer from the reactor and those of the ultimate form of the polymer, i.e., pellets. In this study, a VOA that calculates pellet properties such as the melt index (MI), density, and melt flow rate ratio (MFRR) is developed for bimodal HDPE processes. To estimate the MI and MFRR of the pellet, the concept of mode properties is introduced. The pellet properties are calculated using a combination of the mode properties of the polymer that was produced in each reactor and other operating conditions. An iterative technique is also used to develop a density model to overcome the lack of measurements. Further, by considering the catalyst deactivation mechanisms, mixed catalyst systems can be modeled with the proposed VOA system. An off-line Excel-based program is also developed for use in product design prior to commercial production trials to determine whether a certain new grade can be produced. With all of these components, the proposed VOA system has contributed to effective plant operation.
Publisher
AMER CHEMICAL SOC
Issue Date
2005-01
Language
English
Article Type
Article
Keywords

POLYMERIZATION PROCESSES; GRADE TRANSITIONS; REACTOR; MODEL; STRATEGIES; STATE

Citation

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, v.44, no.1, pp.8 - 20

ISSN
0888-5885
DOI
10.1021/ie049500h
URI
http://hdl.handle.net/10203/92482
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0