Evolutionary design principles of modules that control cellular differentiation: consequences for hysteresis and multistationarity

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 351
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Junilko
dc.contributor.authorKim, Tae-Geonko
dc.contributor.authorJung, Sung Hoonko
dc.contributor.authorKim, Jeong-Raeko
dc.contributor.authorPark, Taesungko
dc.contributor.authorHeslop-Harrison, Patko
dc.contributor.authorCho, Kwang-Hyunko
dc.date.accessioned2013-03-08T03:04:00Z-
dc.date.available2013-03-08T03:04:00Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2008-07-
dc.identifier.citationBIOINFORMATICS, v.24, no.13, pp.1516 - 1522-
dc.identifier.issn1367-4803-
dc.identifier.urihttp://hdl.handle.net/10203/91933-
dc.description.abstractMotivation: Gene regulatory networks (GRNs) govern cellular differentiation processes and enable construction of multicellular organisms from single cells. Although such networks are complex, there must be evolutionary design principles that shape the network to its present form, gaining complexity from simple modules. Results: To isolate particular design principles, we have computationally evolved random regulatory networks with a preference to result either in hysteresis (switching threshold depending on current state), or in multistationarity (having multiple steady states), two commonly observed dynamical features of GRNs related to differentiation processes. We have analyzed the resulting evolved networks and compared their structures and characteristics with real GRNs reported from experiments. Conclusion: We found that the artificially evolved networks have particular topologies and it was notable that these topologies share important features and similarities with the real GRNs, particularly in contrasting properties of positive and negative feedback loops. We conclude that the structures of real GRNs are consistent with selection to favor one or other of the dynamical features of multistationarity or hysteresis.-
dc.languageEnglish-
dc.publisherOXFORD UNIV PRESS-
dc.subjectPOSITIONAL INFORMATION-
dc.subjectREGULATORY NETWORKS-
dc.subjectGENE-REGULATION-
dc.subjectROBUSTNESS-
dc.subjectTOPOLOGY-
dc.subjectMEMORY-
dc.titleEvolutionary design principles of modules that control cellular differentiation: consequences for hysteresis and multistationarity-
dc.typeArticle-
dc.identifier.wosid000257169700007-
dc.identifier.scopusid2-s2.0-46249132982-
dc.type.rimsART-
dc.citation.volume24-
dc.citation.issue13-
dc.citation.beginningpage1516-
dc.citation.endingpage1522-
dc.citation.publicationnameBIOINFORMATICS-
dc.identifier.doi10.1093/bioinformatics/btn229-
dc.contributor.localauthorCho, Kwang-Hyun-
dc.contributor.nonIdAuthorKim, Junil-
dc.contributor.nonIdAuthorKim, Tae-Geon-
dc.contributor.nonIdAuthorJung, Sung Hoon-
dc.contributor.nonIdAuthorKim, Jeong-Rae-
dc.contributor.nonIdAuthorPark, Taesung-
dc.contributor.nonIdAuthorHeslop-Harrison, Pat-
dc.type.journalArticleArticle-
dc.subject.keywordPlusPOSITIONAL INFORMATION-
dc.subject.keywordPlusREGULATORY NETWORKS-
dc.subject.keywordPlusGENE-REGULATION-
dc.subject.keywordPlusROBUSTNESS-
dc.subject.keywordPlusTOPOLOGY-
dc.subject.keywordPlusMEMORY-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0