Performance-driven event-based synchronization for multi-FPGA simulation accelerator with event time-multiplexing bus

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 291
  • Download : 0
Simulation is the most viable solution for the functional verification of system-on-chip (SoC). The acceleration of simulation with multi-field programmable gate array (multi-FPGA) emulator is a promising method to comply with the increasing complexity and large gate capacity of SoC. Time multiplexing of interconnection wires is the inevitable solution to solve the pin limitation problem that limits the gate utilization of FPGAs and speed of multi-FPGA simulation accelerators. The most time-consuming factor of multi-FPGA simulation acceleration is the synchronization time between a software simulator and a multi-FPGA system and the inter-FPGA synchronization time. This paper proposes a performance-driven signal synchronization mechanism for a simulation accelerator with multiple FPGAs using time-multiplexed interconnection. The event-based signal synchronization optimizes the synchronization time between a software simulator and the multi-FPGA system as well as the synchronization time among FPGAs. The synchronization time among FPGAs is optimized by circuit partitioning considering the signal probability, net dependency reduction, and efficient net clustering to reduce addressing overhead. The synchronization time between the software simulator and the multi-FPGA system is also optimized by exploiting the event probability of primary nets. Experiments show that the synchronization time is reduced to 6.2-9.8% of traditional mechanisms.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2005-09
Language
English
Article Type
Article
Keywords

LOGIC EMULATION

Citation

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, v.24, pp.1444 - 1456

ISSN
0278-0070
DOI
10.1109/TCAD.2005.852035
URI
http://hdl.handle.net/10203/91394
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0