A NUCA substrate for flexible CMP cache sharing

Cited 44 time in webofscience Cited 0 time in scopus
  • Hit : 618
  • Download : 0
We propose an organization for the on-chip memory system of a chip multiprocessor in which 16 processors share a 16-Mbyte pool of 64 level-2 (L2) cache banks. The L2 cache is organized as a nonuniform cache architecture (NUCA) array with a switched network embedded in it for high performance. We show that this organization can support a spectrum of degrees of sharing: unshared, in which each processor owns a private portion of the cache, thus reducing hit latency, and completely shared, in which every processor shares the entire cache, thus minimizing misses, and every point in between. We measure the optimal degree of sharing for different cache bank mapping policies and also evaluate a per-application cache partitioning strategy. We conclude that a static NUCA organization with sharing degrees of 2 or 4 works best across a suite of commercial and scientific parallel workloads. We demonstrate that migratory dynamic NUCA approaches improve performance significantly for a subset of the workloads at the cost of increased complexity, especially as per-application cache partitioning strategies are applied. We also evaluate the energy efficiency of each design point in terms of network traffic, bank accesses, and external memory accesses.
Publisher
IEEE COMPUTER SOC
Issue Date
2007-08
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, v.18, no.8, pp.1028 - 1040

ISSN
1045-9219
DOI
10.1109/TPDS.2007.1091
URI
http://hdl.handle.net/10203/90682
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0