Exploiting locality for irregular scientific codes

Cited 49 time in webofscience Cited 0 time in scopus
  • Hit : 447
  • Download : 0
Irregular scientific codes experience poor cache performance due to their irregular memory access patterns. In this paper, we present two new locality improving techniques for irregular scientific codes. Our techniques exploit geometric structures hidden in data access patterns and computation structures. Our new data reordering (GPART) finds the graph structure within data accesses and applies hierarchical clustering. Quality partitions are constructed quickly by clustering multiple neighbor nodes with priority on nodes with high degree and repeating a few passes. Overhead is kept low by clustering multiple nodes in each pass and considering only edges between partitions. Our new computation reordering (Z-SORT) treats the values of index arrays as coordinates and reorders corresponding computations in Z-curve order. Applied to dense inputs, Z-SORT achieves performance close to data reordering combined with other computation reordering but without the overhead involved in data reordering. Experiments on irregular scientific codes for a variety of meshes show locality optimization techniques are effective for both sequential and parallelized codes, improving performance by 60-87 percent. GPART achieved within 1-2 percent of the performance of more sophisticated partitioning algorithms, but with one third of the overhead. Z-SORT also yields the performance improvement of 64 percent for dense inputs, which is comparable with data reordering combined with computation reordering.
Publisher
IEEE Computer Soc
Issue Date
2006
Language
English
Article Type
Article
Keywords

REDUCTIONS; SUPPORT

Citation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, v.17, no.7, pp.606 - 618

ISSN
1045-9219
URI
http://hdl.handle.net/10203/89824
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 49 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0