Logarithmic expansions for Reynolds shear stress and Reynolds heat flux in a turbulent channel flow

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 303
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSeena A.ko
dc.contributor.authorBushra A.ko
dc.contributor.authorAfzal N.ko
dc.date.accessioned2013-03-06T14:39:51Z-
dc.date.available2013-03-06T14:39:51Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2008-
dc.identifier.citationJOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, v.130, no.9-
dc.identifier.issn0022-1481-
dc.identifier.urihttp://hdl.handle.net/10203/87281-
dc.description.abstractThe heat and fluid flow in a fully developed turbulent channel flow have been investigated. The closure model of Reynolds shear stress and Reynolds heat flux as a function of a series of logarithmic functions in the mesolayer variable have been adopted. The interaction between inner and outer layers in the mesolayer (intermediate layer) arising from the balance of viscous effect, pressure gradient and Reynolds shear stress (containing the maxima of Reynolds shear stress) was first proposed by Afzal (1982, "Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer," Arch. Appl. Mech., 53, 355-377). The unknown constants in the closure models for Reynolds shear stress and Reynolds heat flux have been estimated from the prescribed boundary conditions near the axis and surface of channel. The predictions are compared with the DNS data Iwamoto and Abe for Reynolds shear stress and velocity profile and Abe data of Reynolds heat flux and temperature profile. The limitations of the closure models are presented.-
dc.languageEnglish-
dc.publisherASME-AMER SOC MECHANICAL ENG-
dc.subjectLARGE-SCALE MOTIONS-
dc.subjectBOUNDARY-LAYER-
dc.subjectWALL TURBULENCE-
dc.subjectPRESSURE-GRADIENT-
dc.subjectPIPE-
dc.subjectMESOLAYER-
dc.subjectPOSITION-
dc.subjectPERIOD-
dc.titleLogarithmic expansions for Reynolds shear stress and Reynolds heat flux in a turbulent channel flow-
dc.typeArticle-
dc.identifier.wosid000257628600016-
dc.identifier.scopusid2-s2.0-56449088824-
dc.type.rimsART-
dc.citation.volume130-
dc.citation.issue9-
dc.citation.publicationnameJOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME-
dc.identifier.doi10.1115/1.2944240-
dc.contributor.localauthorSeena A.-
dc.contributor.nonIdAuthorBushra A.-
dc.contributor.nonIdAuthorAfzal N.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorReynolds heat flux closure model-
dc.subject.keywordAuthorthermal mesolayer-
dc.subject.keywordAuthortemperature profile-
dc.subject.keywordPlusLARGE-SCALE MOTIONS-
dc.subject.keywordPlusBOUNDARY-LAYER-
dc.subject.keywordPlusWALL TURBULENCE-
dc.subject.keywordPlusPRESSURE-GRADIENT-
dc.subject.keywordPlusPIPE-
dc.subject.keywordPlusMESOLAYER-
dc.subject.keywordPlusPOSITION-
dc.subject.keywordPlusPERIOD-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0