A patch-type smart self-sensing actuator

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 1159
  • Download : 0
For vibration control applications, a collocated input/output response is generally desired. A perfect sensor/actuator collocation usually provides a stable performance in closed-loop feedback controls. Self-sensing actuators of various types have been proposed, but they still show several problems such as hysteresis, phase error, non-linear response, and complexity of the compensation technique. This paper presents a new patch-type self-sensing actuator based on an extrinsic Fabry-Perot interferometer and a piezoelectric ceramic. The proposed self-sensing actuator not only guarantees stabilities in 'direct-feedback control loops' such as in existing sensoriactuators but also has better strain resolution and a wider dynamic sensing range. Finally, the application of active vibration control is demonstrated using the self-sensing actuator developed.
Publisher
IOP PUBLISHING LTD
Issue Date
2006-06
Language
English
Article Type
Article
Citation

SMART MATERIALS & STRUCTURES, v.15, no.3, pp.667 - 677

ISSN
0964-1726
URI
http://hdl.handle.net/10203/86778
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0