Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288 degrees C

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 288
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee S.G.ko
dc.contributor.authorKim, In Supko
dc.date.accessioned2013-03-06T10:21:49Z-
dc.date.available2013-03-06T10:21:49Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2006-03-
dc.identifier.citationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.420, no.1-2, pp.279 - 285-
dc.identifier.issn0921-5093-
dc.identifier.urihttp://hdl.handle.net/10203/86674-
dc.description.abstractHydrogen effects on mechanical strength and crack growth were studied at high temperatures. The study was motivated by the fact that the environmentally assisted cracking (EAC) of pressure vessel steel SA508 Cl.3 in 288 degrees C water was suspected to be related to hydrogen embrittlement. Fatigue crack growth rate and tensile tests were performed with hydrogen pre-charged specimens at high temperatures. At 288 degrees C the fatigue crack growth rate of the hydrogen pre-charged specimen was faster than that of as-received; the fatigue fracture surface of hydrogen pre-charged specimen correspondingly showed EAC like feature. Meanwhile, ductile striation was evident for the case of as-received in both air and argon gas environments. In the dynamic strain aging (DSA) loading condition at 288 degrees C during tensile tests, the pre-charged hydrogen induced a marked softening (decrease in ultimate tensile strength; UTS) as well as a little ductility loss; this was accompanied by the macrocracks grown from microvoids/microcracks promoted by DSA and hydrogen. These experiments showed that hydrogen embrittlement is an effective mechanism of EAC not only at low temperature but also at the high temperature. (c) 2006 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectPRESSURE-VESSEL STEEL-
dc.subjectHIGH-TEMPERATURE WATER-
dc.subjectCARBON-STEELS-
dc.subjectSTRAIN-RATE-
dc.subjectENVIRONMENT-
dc.subjectFRACTURE-
dc.subjectPROPAGATION-
dc.subjectMECHANISM-
dc.titleEffect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288 degrees C-
dc.typeArticle-
dc.identifier.wosid000236952100038-
dc.identifier.scopusid2-s2.0-33645554973-
dc.type.rimsART-
dc.citation.volume420-
dc.citation.issue1-2-
dc.citation.beginningpage279-
dc.citation.endingpage285-
dc.citation.publicationnameMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.identifier.doi10.1016/j.msea.2006.01.080-
dc.contributor.nonIdAuthorLee S.G.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorreactor pressure vessel-
dc.subject.keywordAuthorfatigue crack growth rate-
dc.subject.keywordAuthortensile property-
dc.subject.keywordAuthorhydrogen effect-
dc.subject.keywordAuthordynamic strain aging-
dc.subject.keywordPlusPRESSURE-VESSEL STEEL-
dc.subject.keywordPlusHIGH-TEMPERATURE WATER-
dc.subject.keywordPlusCARBON-STEELS-
dc.subject.keywordPlusSTRAIN-RATE-
dc.subject.keywordPlusENVIRONMENT-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusPROPAGATION-
dc.subject.keywordPlusMECHANISM-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0