Targeted quantum dot conjugates for siRNA delivery

Cited 322 time in webofscience Cited 343 time in scopus
  • Hit : 320
  • Download : 0
Treatment of human diseases such as cancer generally involves the sequential use of diagnostic tools and therapeutic modalities. Multifunctional platforms combining therapeutic and diagnostic imaging functions in a single vehicle promise to change this paradigm. in particular, nanoparticle-based multifunctional platforms offer the potential to improve the pharmacokinetics of drug formulations, while providing attachment sites for diagnostic imaging and disease targeting features. We have applied these principles to the delivery of small interfering RNA (siRNA) therapeutics, where systemic delivery is hampered by rapid excretion and nontargeted tissue distribution. Using a PEGlyated quantum dot (QD) core as a scaffold, siRNA and tumor-homing peptides (F3) were conjugated to functional groups on the particle's surface. We found that the homing peptide was required for targeted internalization by tumor cells, and that siRNA cargo could be coattached without affecting the function of the peptide. Using an EGFP model system, the role of conjugation chemistry was investigated, with siRNA attached to the particle by disulfide cross-linkers showing greater silencing efficiency than when attached by a nonreducible thioether linkage. Since each particle contains a limited number of attachment sites, we further explored the tradeoff between number of F3 peptides and the number of siRNA per particle, leading to an optimized formulation. Delivery of these F3/siRNA-QDs to EGFP-transfected HeLa cells and release from their endosomal entrapment led to significant knockdown of EGFP signal. By designing the siRNA sequence against a therapeutic target (e.g., oncogene) instead of EGFP, this technology may be ultimately adapted to simultaneously treat and image metastatic cancer.
Publisher
AMER CHEMICAL SOC
Issue Date
2007-09
Language
English
Article Type
Article
Keywords

IN-VIVO; ENDOTHELIAL-CELLS; GENE; SURFACE

Citation

BIOCONJUGATE CHEMISTRY, v.18, no.5, pp.1391 - 1396

ISSN
1043-1802
DOI
10.1021/bc060367e
URI
http://hdl.handle.net/10203/86160
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 322 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0