Modeling and time delay control of shape memory alloy actuators

Cited 10 time in webofscience Cited 9 time in scopus
  • Hit : 311
  • Download : 0
Shape memory alloy (SMA) actuators possess hard nonlinearities including backlash-like hysteresis and saturation. These nonlinearities result in steady-state error and limit-cycle problems when conventional controllers such as the proportional integral derivative (PID) are used for trajectory control. In this study, a dynamics for an SMA actuator was newly derived using the modified Liang's model. The derived dynamics showed continuity at the change of the phase transformation process, but the original model could not. SMA actuator characteristics could be well described using this dynamics. The derived dynamics could be also used effectively for the prediction of control performance and gain tuning of the time delay control (TDC). The dynamics consisted of first-order linear and second-order nonlinear equations. Accordingly, a control strategy was established for the TDC to regulate only the second-order nonlinear part for simplicity and for the internal closed loop to regulate the rest. The control strategy was examined from the point of view of influence of an anti-windup scheme and high gain tuning on control performance. An anti-windup scheme was essential to protect windup phenomenon and high gain tuning was effective when a temperature disturbance existed. In the robustness test, the TDC with high gains showed robustness to inertia variation and temperature disturbance in comparison with the TDC with low gains.
Publisher
VSP BV
Issue Date
2004
Language
English
Article Type
Article
Keywords

BEHAVIOR

Citation

ADVANCED ROBOTICS, v.18, no.9, pp.881 - 903

ISSN
0169-1864
DOI
10.1163/1568553042225750
URI
http://hdl.handle.net/10203/85154
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0