Compaction of thick carbon/phenolic fabric composites with autoclave method

Cited 11 time in webofscience Cited 13 time in scopus
  • Hit : 346
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, JWko
dc.contributor.authorKim, HGko
dc.contributor.authorLee, Dai Gilko
dc.date.accessioned2013-03-04T23:10:43Z-
dc.date.available2013-03-04T23:10:43Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2004-10-
dc.identifier.citationCOMPOSITE STRUCTURES, v.66, pp.467 - 477-
dc.identifier.issn0263-8223-
dc.identifier.urihttp://hdl.handle.net/10203/84477-
dc.description.abstractCarbon/phenolic composites are used in the nozzle parts of solid rocket motors due to their heat-resisting, ablative, and high strength characteristics, which are required to endure the high temperature and pressure of combustion gas passing through the nozzle. But the thick axi-symmetric structure of the composite nozzle induces high thermal residual stresses due to the large difference of coefficient of thermal expansion (CTE) between the in-plane and the out-of-plane. In this work, in order to reduce the through-thickness CTE and the void content, a compression in the thickness direction was applied to the composite prepreg by a compressive jig during manufacturing of composite to supplement the low autoclave pressure. The through-thickness CTE of the fabric composite was calculated by a compaction model and compared with the measured one by thermo-mechanical analysis. The through-thickness CTE changed drastically with respect to the compaction amount, and the void content of the carbon/phenolic fabric composite laminate showed different characteristics from the ordinary fabric laminates with respect to the autoclave pressure and the jig pressure. (C) 2004 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectTHERMAL-EXPANSION COEFFICIENTS-
dc.subjectPLAIN-WEAVE COMPOSITES-
dc.subjectSTRENGTH-
dc.subjectPREFORMS-
dc.titleCompaction of thick carbon/phenolic fabric composites with autoclave method-
dc.typeArticle-
dc.identifier.wosid000223854800052-
dc.identifier.scopusid2-s2.0-4143064602-
dc.type.rimsART-
dc.citation.volume66-
dc.citation.beginningpage467-
dc.citation.endingpage477-
dc.citation.publicationnameCOMPOSITE STRUCTURES-
dc.identifier.doi10.1016/j.compstruct.2004.04.070-
dc.contributor.localauthorLee, Dai Gil-
dc.contributor.nonIdAuthorKim, JW-
dc.contributor.nonIdAuthorKim, HG-
dc.type.journalArticleArticle; Proceedings Paper-
dc.subject.keywordAuthorwoven fabric-
dc.subject.keywordAuthorcompaction-
dc.subject.keywordAuthorthick composite-
dc.subject.keywordAuthorcarbon/phenolic-
dc.subject.keywordAuthorcoefficient of thermal expansion-
dc.subject.keywordAuthorvoid content-
dc.subject.keywordAuthorthrough-thickness property-
dc.subject.keywordAuthorcomposite nozzle-
dc.subject.keywordPlusTHERMAL-EXPANSION COEFFICIENTS-
dc.subject.keywordPlusPLAIN-WEAVE COMPOSITES-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusPREFORMS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0