Growth energetics of single-wall carbon nanotubes with carbon monoxide

Cited 9 time in webofscience Cited 11 time in scopus
  • Hit : 367
  • Download : 0
The microscopic growth energetics of single-wall carbon nanotubes (SWNTs) with gas-phase CO molecules is investigated. Our density functional calculations show that CO molecules can form carbon networks directly at an open edge of SWNT by adsorption and subsequent desorption procedure. CO molecules adsorb to the carbon atom in an open edge of the SWNT, not through the oxygen atom but through the carbon atom, because the frontier orbital of the CO molecule has more carbon character. Such adsorption results in the formation of a carbon-carbon bond. Formation of a hexagonal carbon ring is thermodynamically more favorable than that of a pentagonal carbon ring and becomes a driving force for the growth of SWNTs. A possible growth mechanism through formation of hexagonal ring structure is suggested from the results of this study. Our results of energy calculations suggest that growth in the direction of a zigzag wall is more favorable. The roles of a catalyst, which nucleates the growth of SWNT and stabilizes an open edge with dangling bonds, are further discussed.
Publisher
AMER CHEMICAL SOC
Issue Date
2004-04
Language
English
Article Type
Article
Keywords

OXYGEN-ADSORPTION; SPECTROSCOPY; MOLECULES; GRAPHITE; TUBULES; MODEL

Citation

JOURNAL OF PHYSICAL CHEMISTRY B, v.108, no.14, pp.4308 - 4313

ISSN
1520-6106
DOI
10.1021/jp0368740
URI
http://hdl.handle.net/10203/83487
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0