Electronic and vibrational population transfer in diatomic molecules as a function of chirp for different pulse bandwidths

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 322
  • Download : 0
We study the dynamics of two-photon nonresonant electronic excitation of diatomic molecules driven by chirped pulses. While the majority of the experimental results address the role of the chirp for fixed pulse bandwidth, we analyze the possibility of selective excitation for fixed time, as a function of the pulse bandwidth, depending on the sign of the chirp. With strong picosecond pulses and positive chirp it is shown that the dynamics always prepare the molecule in the ground vibrational level of the excited electronic state. The robustness of the dynamics inherits the properties of an effective Landau-Zener crossing. For negative chirp the final state is very sensitive to the specific pulse bandwidth. The dynamics of the system follow a complex convoluted behavior, and the final state alternates between low vibrational levels of the excited electronic state and excited vibrational levels of the ground potential, which become increasingly more excited with increasing bandwidth. The final electronic populations follow a double-period oscillatory behavior. We present a model based on sequential independent crossings which correlates the long-oscillation period with changes in the final vibrational state selected. We show that the short-oscillation period is related with nonadiabatic effects that give rise to fast dynamic Rabi flipping between the electronic states, providing only information of the field-molecule effective coupling. Although the short-oscillation period partially masks the expected results of the final populations, we show that it is still possible to retrieve information from the long-oscillation period regarding the frequencies of the electronic potentials. In order to do so, or in order to control the outcome of the dynamics, it is necessary to perform experiments scanning very different pulse bandwidths, and we propose a possible experimental implementation. All the numerical results of the paper are calculated for a model of the Na-2 dimer. (C) 2003 American Institute of Physics.
Publisher
AMER INST PHYSICS
Issue Date
2003-04
Language
English
Article Type
Article
Keywords

FEMTOSECOND LASER-PULSES; ADIABATIC PASSAGE; SELECTIVE EXCITATION; QUANTUM CONTROL; MULTIPHOTON ABSORPTION; INVERSION; COHERENT; PHASE; STATES; DISSOCIATION

Citation

JOURNAL OF CHEMICAL PHYSICS, v.118, no.14, pp.6270 - 6279

ISSN
0021-9606
URI
http://hdl.handle.net/10203/83405
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0