A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance

Cited 44 time in webofscience Cited 44 time in scopus
  • Hit : 477
  • Download : 0
A recurrent integrator proportional integral derivative (PID) model that has been used to account for cerebrocerebellar stabilization and scaling of transcortical proprioceptive feedback in the control of horizontal planar arm movements has been augmented with long-loop force feedback and gainscheduling to describe the control of human upright balance. The cerebellar component of the controller is represented by two sets of gains that each provide linear scaling of same-joint and interjoint long-loop stretch responses between ankle, knee, and hip. The cerebral component of the model includes a single set of same-joint linear force feedback gains. Responses to platform translations of a three-segment body model operating under this hybrid proprioception and force-based long-loop control were simulated. With low-velocity platform disturbances, "ankle-strateg"-type postural recovery kinematics and electromyogram (EMG) patterns were generated using the first set of cerebeller control gains. With faster disturbances, balance was maintained by including the second set of gains cerebellar control gains that yielded "mixed ankle-hip strategy"-type kinematics and EMG patterns. The addition of small amounts of simulated muscular coactivation improved the fit to certain human datasets. It is proposed that the cerebellum switches control gainsets as a function of sensed body kinematic state. Reduction of cerebellar gains with a compensatory increase in muscular stiffness yielded posture recovery with abnormal motions consistent with those found in cerebellar disease. The model demonstrates that stabilized hybrid long-loop feedback with scheduling of linear gains may afford realistic balance control in the absence of explicit internal dynamics models and suggests that the cerebellum and cerebral cortex may contribute to balance control by such a mechanism.
Publisher
SPRINGER
Issue Date
2004-09
Language
English
Article Type
Article
Keywords

MULTIJOINT ARM MOVEMENT; POSTURAL MOVEMENTS; ALTERED SUPPORT; MOTOR CONTROL; ORGANIZATION; ADAPTATION; STRETCH; STANCE; COORDINATION; TRAJECTORIES

Citation

BIOLOGICAL CYBERNETICS, v.91, no.3, pp.188 - 202

ISSN
0340-1200
DOI
10.1007/s00422-004-0497-z
URI
http://hdl.handle.net/10203/83198
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0