Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP

Cited 114 time in webofscience Cited 115 time in scopus
  • Hit : 365
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBae, Sung-Hoko
dc.contributor.authorChoi, Eunjooko
dc.contributor.authorLee, Kyoung-Hwako
dc.contributor.authorPark, Jung Sunko
dc.contributor.authorLee, Sung-Hakko
dc.contributor.authorSeo, Yeon-Sooko
dc.date.accessioned2013-03-02T18:06:02Z-
dc.date.available2013-03-02T18:06:02Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued1998-10-
dc.identifier.citationJOURNAL OF BIOLOGICAL CHEMISTRY, v.273, no.41, pp.26880 - 26890-
dc.identifier.issn0021-9258-
dc.identifier.urihttp://hdl.handle.net/10203/74836-
dc.description.abstractTo gain further insights into the biological functions of Dnaa, previously known as a cellular replicative helicase in Saccharomyces cerevisiae, we examined biochemical properties of the recombinant Dnaa protein purified to homogeneity, Besides the single-stranded (Ss) DNA-dependent ATPase activity as reported previously, we were able to demonstrate that ssDNA-specific endonuclease activity is intrinsically associated with Dna2, Moreover, Dnaa was capable of degrading duplex DNA in an ATP-dependent fashion. ATP and dATP, the only nucleotides hydrolyzed by Dnaa, served to stimulate Dnaa to utilize duplex DNA, indicating their hydrolysis is required. Dna2 was able to unwind short duplex only under the condition where the endonuclease activity was minimized. This finding implies that Dna2 unwinds only partially the 3'-end of duplex DNA and generates a stretch of ssDNA of limited length, which is subsequently cleaved by the ssDNA-specific endonuclease activity, A point mutation at the conserved ATP-binding site of Dna2 inactivated concurrently ssDNA-dependent ATPase, ATP-dependent nuclease, and helicase activities, indicating that they all reside in Dna2 itself, By virtue of its nucleolytic activities, the Dnaa protein may function in the maintenance of chromosomal integrity, such as repair or other related process, Father than in propagation of cellular replication forks.-
dc.languageEnglish-
dc.publisherAMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC-
dc.subjectCELL-CYCLE CHECKPOINTS-
dc.subjectRECBCD ENZYME-
dc.subjectHELICASE-
dc.subjectREPLICATION-
dc.subjectREPAIR-
dc.subjectRECOMBINATION-
dc.subjectNUCLEASE-
dc.subjectPROTEIN-
dc.subjectBINDING-
dc.subjectDAMAGE-
dc.titleDna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP-
dc.typeArticle-
dc.identifier.wosid000076373300089-
dc.identifier.scopusid2-s2.0-0032500542-
dc.type.rimsART-
dc.citation.volume273-
dc.citation.issue41-
dc.citation.beginningpage26880-
dc.citation.endingpage26890-
dc.citation.publicationnameJOURNAL OF BIOLOGICAL CHEMISTRY-
dc.identifier.doi10.1074/jbc.273.41.26880-
dc.contributor.localauthorSeo, Yeon-Soo-
dc.contributor.nonIdAuthorBae, Sung-Ho-
dc.contributor.nonIdAuthorChoi, Eunjoo-
dc.contributor.nonIdAuthorLee, Kyoung-Hwa-
dc.contributor.nonIdAuthorPark, Jung Sun-
dc.contributor.nonIdAuthorLee, Sung-Hak-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCELL-CYCLE CHECKPOINTS-
dc.subject.keywordPlusRECBCD ENZYME-
dc.subject.keywordPlusHELICASE-
dc.subject.keywordPlusREPLICATION-
dc.subject.keywordPlusREPAIR-
dc.subject.keywordPlusRECOMBINATION-
dc.subject.keywordPlusNUCLEASE-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusBINDING-
dc.subject.keywordPlusDAMAGE-
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 114 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0