Gravity-driven injection experiments and direct-contact condensation regime map for passive high-pressure injection system

Cited 22 time in webofscience Cited 0 time in scopus
  • Hit : 344
  • Download : 0
A gravity-driven injection experiment of a passive high-pressure injection system with a pressurizer pressure balance line (PRZ PBL) is conducted by using a small-scale test facility to identify the parameters affecting the gravity-driven injection and the major condensation regimes. It turns out that the larger the water subcooling is, the more the injection initiation is delayed. A sparger and natural circulation of the hot water from the steam generator accelerate the gravity-driven injection. The condensation regimes identified through the experiments are divided into three distinct ones: sonic jet, subsonic jet, and steam cavity. The steam cavity regime is a unique regime of downward injection with the present geometry not previously observed in other experiments. The condensation regime map is constructed using Froude number and Jacob number. It turns out that the buoyancy force has a larger influence on the regime map transition because the regime map using the Froude number better fits data with different geometries than other dimensionless parameters. Simple correlations for the regime boundaries are proposed using the Froude number and the Jacob number. (C) 1998 Elsevier Science S.A. All rights reserved.
Publisher
ELSEVIER SCIENCE SA
Issue Date
1998-07
Language
English
Article Type
Article
Citation

NUCLEAR ENGINEERING AND DESIGN, v.183, no.3, pp.213 - 234

ISSN
0029-5493
URI
http://hdl.handle.net/10203/73320
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 22 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0