Modeling of spin-polarized transport and study of magnetoresistance스핀분극이동 모델링과 자기저항 연구

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 396
  • Download : 0
A quantum-mechanical free electron model used to analyze the spin-polarized transport and the MR is presented in a more realistic way. The MR is evaluated by using the three spin-resolved conductance parameters based on Landauer formalism. In the ballistic regime the spin-dependent transmission probability is calculated as a function of the transverse mode by using a transfer-matrix method. It is possible to deal with a contribution of the spin-dependent potential scattering to the MR quantum-mechanically by analyzing the spin-dependent transmission probability. The spin-dependent conduction-band structure is constructed by extracting free electron model parameters such as the atomic magnetic moments and the conduction electron densities from the spin-dependent LDOS for the interfacial layer in Cu5/Co11 or Al4/Co10 slabs calculated by a DFT calculation. It is possible to deal with a contribution of the sp-d or the d-d hybridizations at the interface between ferromagnetic and normal metals to the spin-polarized transport and to the MR by using a DFT calculation. Consequently, a qualitative analysis for the spin-polarized transport and for the CPP-GMR in a specific material system may be possible by using a quantum-mechanical free electron model differentiated by a DFT calculation. The effect of the number of layers and of the geometrical shape and size of the cross-section on the CPP-GMR, and the effect of the thickness of an amorphous aluminum oxide layer on the TMR are investigated by using a quantum-mechanical free electron model. The spin-dependent scattering and the CPP-GMR increase with the number of layers in a magnetic multilayer and the TMR and the R×A product increase with the thickness of an amorphous aluminum oxide layer. Those calculation results are consistent with the experimental results qualitatively. The geometrical shape of the cross-section has an important effect on the CPP-GMR, however, the cross-sectional size does not.
Advisors
Lee, Hyuck-Moresearcher이혁모researcher
Description
한국과학기술원 : 신소재공학과,
Publisher
한국과학기술원
Issue Date
2007
Identifier
268711/325007  / 020025832
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 신소재공학과, 2007. 8, [ vi, 89 p. ]

Keywords

spin-polarized transport; magnetoresistance; 스핀분극이동; 자기저항

URI
http://hdl.handle.net/10203/49650
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=268711&flag=dissertation
Appears in Collection
MS-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0