Strain-induced second harmonic generation in ultrathin films스트레인에 의한 이차 조화파 발생에 관한 연구

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 470
  • Download : 0
The Nonlinear optical methods are widely used for the investigation of real solids, and are usually more powerful than linear optical methods. Among nonlinear optical phenomena second-harmonic generation (SHG) is very efficient for an investigation of thin films and interfaces. The SHG signal is very sensitive to a change of symmetry induced by various physical actions--for example, by strain. Special kinds of internal strain lead to a lowering of the symmetry of a crystal, i.e., to a missing of the inversion center. As a result, bulk dipole active optical SHG should be observed for transparent materials in the transmission geometry. From another side, surfaces and interfaces of centrosymmetric bulk materials are characterized by a lower point-symmetry group even in the absence of strain. In this case a more effective method to observe strain-induced changes of a surface is the measurement of optical SHG in the reflection geometry. In both cases, a method using three-photon phenomena is an effective tool for investigating strain-induced effects in solids and solid-state structures. For development of strain-induced SHG as an applicable method for investigation, both theoretical and experimental approach have been made in this thesis. Strain-induced three-photon effects such as SHG and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tenso...
Advisors
Shin, Sung-Chulresearcher신성철researcher
Description
한국과학기술원 : 물리학과,
Publisher
한국과학기술원
Issue Date
2005
Identifier
245026/325007  / 000995343
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 물리학과, 2005.2, [ v, 76 p. ]

Keywords

Second Harmonic Generation; 이차 조화파

URI
http://hdl.handle.net/10203/47589
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=245026&flag=dissertation
Appears in Collection
PH-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0