Symbolic calculus of Hermite operatorsHermite 작용소의 연산

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 398
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKwon, Kil-Hyun-
dc.contributor.advisor권길헌-
dc.contributor.authorOh, Weon-Ho-
dc.contributor.author오원호-
dc.date.accessioned2011-12-14T04:58:02Z-
dc.date.available2011-12-14T04:58:02Z-
dc.date.issued1987-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=65550&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/42297-
dc.description학위논문(석사) - 한국과학기술원 : 응용수학과, 1987.2, [ [ii], 28, [3] p. ; ]-
dc.description.abstractLike a pseudo-differential operator, a Hermite operator on $R^n$ is defined as a linear mapping of $C_0^{\infty}(R^n)$ into $C^{\infty}(R^{n+1})$ by using an amplitude which is a $C^{\infty}$ -function satisfying a certain growth condition and with the concept of oscillating integral. In this paper we show that a Hermite operator of degree m on $R^n$ can be extended as a continuous linear mapping of $H_C^s(R^n)$ into $H_{loc}^{s-m}(R^{n+1})$. Also, we can compose Hermite operators and pseudo-differential operators modulo regularizing operators and compute symbols for each case; if K and K`` are Hermite operators on $R^n$ and A and B are pseudo-differential operators on $R^{n+1}$ and $R^n$ respectively, then $K^*\Cdot K``$ is a pseudo differential operator on $R^n$ and $A\Cdot K$ and $A\Cdot B$ are Hermite operators on $R^n$.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.titleSymbolic calculus of Hermite operators-
dc.title.alternativeHermite 작용소의 연산-
dc.typeThesis(Master)-
dc.identifier.CNRN65550/325007-
dc.description.department한국과학기술원 : 응용수학과, -
dc.identifier.uid000851239-
dc.contributor.localauthorKwon, Kil-Hyun-
dc.contributor.localauthor권길헌-
Appears in Collection
MA-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0