Area optimization algorithms for FSM synthesis and FPGA technology mappingFSM 합성과 FPGA 기술 매핑을 위한 면적 최적화 알고리즘

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 440
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKyung, Chong-Min-
dc.contributor.advisor경종민-
dc.contributor.authorPark, Sung-Soo-
dc.contributor.author박성수-
dc.date.accessioned2011-12-14-
dc.date.available2011-12-14-
dc.date.issued1995-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=101740&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/36298-
dc.description학위논문(박사) - 한국과학기술원 : 전기및전자공학과, 1995.8, [ viii, 104 p. ]-
dc.description.abstractVery Large Scale Integrated (VLSI) circuits require a structured and hierachical design methodology to cope with design complexity. Automated synthesis from the functional description of the control logic allows decrease of design time while keeping logical correctness. However, computer-aided synthesis of control logic often yields a circuit requiring a large implementation area. Therefore, automated synthesis of VLSI system must include area optimization procedures. In this thesis, two area optimization techniques for control logic synthesis are addressed. Finite State Machine (FSM) play a major role in the control part of the VLSI system. FSM is constructed in two main ways; two-level implementation (PLA) and multi- level implementation such as standard cell implementation. The implementation area of FSM heavily depends on the state encoding. In chapter 2, a new efficient state encoding algorithm was proposed and implemented as a computer program, SECH (State Encoding by Construction of Hypercube). SECH is applicable for both two-level and multi-level implementation by controlling the encoding affinity. The state encoding process is modelled as a construction of hypercube, where the code of each state is given by the coordinate of the corresponding vertex of the NE- dimensional hypercube, where NE is the number of encoding bits. Experimental results show that SECH produces better results than existing two-level specialized state encoding programs and multi-level specialized state encoding programs in the reduced CPU time. The ability to shorten development cycle has made Field-Programmable Gate Arrays (FPGAs) attractive compared to standard cell implementation. One important class of FPGAs are those that use lookup tables (LUTs). The ability of an m-input LUT to implement any Boolean function of less than m variables differentiates the synthesis of LUT circuits from the conventional logic synthesis. The optimization goal for LUT-based FPGA synthesis is ty...eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectFPGA-
dc.subject상태 부호화-
dc.subject스테이트 머신-
dc.subjectFSM-
dc.subjectFPGA-
dc.subjectstate encoding-
dc.subjectFinite State Machine-
dc.subjectFSM-
dc.titleArea optimization algorithms for FSM synthesis and FPGA technology mapping-
dc.title.alternativeFSM 합성과 FPGA 기술 매핑을 위한 면적 최적화 알고리즘-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN101740/325007-
dc.description.department한국과학기술원 : 전기및전자공학과, -
dc.identifier.uid000885158-
dc.contributor.localauthorKyung, Chong-Min-
dc.contributor.localauthor경종민-
Appears in Collection
EE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0