Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 4
  • Download : 0
This work demonstrates the low-temperature operation of solid-state lithium metal batteries (LMBs) through the development of a fluorinated and plastic-crystal-embedded elastomeric electrolyte (F-PCEE). The F-PCEE is formed via polymerization-induced phase separation between the polymer matrix and plastic crystal phase, offering a high mechanical strain (approximate to 300%) and ionic conductivity (approximate to 0.23 mS cm-1) at -10 degrees C. Notably, strong phase separation between two phases leads to the selective distribution of lithium (Li) salts within the plastic crystal phase, enabling superior elasticity and high ionic conductivity at low temperatures. The F-PCEE in a Li/LiNi0.8Co0.1Mn0.1O2 full cell maintains 74.4% and 42.5% of discharge capacity at -10 degrees C and -20 degrees C, respectively, compared to that at 25 degrees C. Furthermore, the full cell exhibits 85.3% capacity retention after 150 cycles at -10 degrees C and a high cut-off voltage of 4.5 V, representing one of the highest cycling performances among the reported solid polymer electrolytes for low-temperature LMBs. This work attributes the prolonged cycling lifetime of F-PCEE at -10 degrees C to the great mechanical robustness to suppress the Li-dendrite growth and ability to form superior LiF-rich interphases. This study establishes the design strategies of elastomeric electrolytes for developing solid-state LMBs operating at low temperatures and high voltages.,The fluorinated elastomeric electrolyte formed via polymerization-induced phase separation exhibits excellent ionic conductivity, mechanical resilience, and an ability to form stable interfaces at low temperatures, offering superior electrochemical performances of low-temperature and high-voltage operating solid-state lithium metal batteries. image,
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2024-07
Language
English
Article Type
Article
Citation

ADVANCED MATERIALS, v.36, no.30

ISSN
0935-9648
DOI
10.1002/adma.202403191
URI
http://hdl.handle.net/10203/322864
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0