The future of ship engines: Renewable fuels and enabling technologies for decarbonization

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 8
  • Download : 0
Shipping is one of the most efficient transportation modes for moving freight globally. International regulations concerning decarbonization and emission reduction goals drive rapid innovations to meet the 2030 and 2050 greenhouse gas reduction targets. The internal combustion engines used for marine vessels are among the most efficient energy conversion systems. Internal combustion engines dominate the propulsion system architectures for marine shipping, and current marine engines will continue to serve for several decades. However, to meet the aggressive goals of low-carbon-intensity shipping, there is an impetus for further efficiency improvement and achieving net zero greenhouse gas emissions. These factors drive the advancements in engine technologies, low-carbon fuels and fueling infrastructure, and emissions control systems. This editorial presents a perspective on the future of ship engines and the role of low-life cycle-carbon-fuels in decarbonizing the marine shipping sector. A selection of zero-carbon, net-zero carbon, and low-lifecycle-carbon-fuels are reviewed. This work focuses on the opportunities and challenges of displacing distillate fossil fuels for decarbonizing marine shipping. Enabling technologies such as next-generation air handling, fuel injection systems, and advanced combustion modes are discussed in the context of their role in the future of low-CO2 intensity shipping.
Publisher
SAGE PUBLICATIONS LTD
Issue Date
2024-01
Language
English
Article Type
Editorial Material
Citation

INTERNATIONAL JOURNAL OF ENGINE RESEARCH, v.25, no.1, pp.85 - 110

ISSN
1468-0874
DOI
10.1177/14680874231187954
URI
http://hdl.handle.net/10203/322671
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0